-
Notifications
You must be signed in to change notification settings - Fork 2.6k
Integrate Bria 3.1/3.2 Models and ControlNet Pipelines into InvokeAI #8248
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
ilanbria
wants to merge
14
commits into
invoke-ai:main
Choose a base branch
from
ilanbria:ilan/support_bria_3.2_pipeline
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
14 commits
Select commit
Hold shift + click to select a range
e9de32e
Setup Probe and UI to accept bria main models
brandonrising fc5ff7d
added support for loading bria transformer
6c93ba4
front end support for bria
b976e51
addded bria nodes for bria3.1 and bria3.2
901ea6e
Setup Probe and UI to accept bria controlnet models
dced2cf
Add Bria text to image model and controlnet support
800eda8
Added scikit-image required for Bria's OpenposeDetector model
02a1ebb
removed unused file
eb125a3
Small cosmetic fixes
3082387
moved bria's nodes to invocations folder
856448c
fixed node issue
8e25472
ruff fix
8e43c31
fixed schema
624b1d8
cr fixes 1
ilanbria File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
from PIL import Image | ||
from pydantic import BaseModel, Field | ||
|
||
from invokeai.app.invocations.baseinvocation import ( | ||
BaseInvocation, | ||
BaseInvocationOutput, | ||
invocation, | ||
invocation_output, | ||
) | ||
from invokeai.app.invocations.fields import ( | ||
FieldDescriptions, | ||
ImageField, | ||
InputField, | ||
OutputField, | ||
UIType, | ||
WithBoard, | ||
WithMetadata, | ||
) | ||
from invokeai.app.invocations.model import ModelIdentifierField | ||
from invokeai.app.services.shared.invocation_context import InvocationContext | ||
from invokeai.backend.bria.controlnet_bria import BRIA_CONTROL_MODES | ||
from invokeai.invocation_api import Classification, ImageOutput | ||
|
||
DEPTH_SMALL_V2_URL = "depth-anything/Depth-Anything-V2-Small-hf" | ||
HF_LLLYASVIEL = "https://huggingface.co/lllyasviel/Annotators/resolve/main/" | ||
|
||
|
||
class BriaControlNetField(BaseModel): | ||
image: ImageField = Field(description="The control image") | ||
model: ModelIdentifierField = Field(description="The ControlNet model to use") | ||
mode: BRIA_CONTROL_MODES = Field(description="The mode of the ControlNet") | ||
conditioning_scale: float = Field(description="The weight given to the ControlNet") | ||
|
||
|
||
@invocation_output("bria_controlnet_output") | ||
class BriaControlNetOutput(BaseInvocationOutput): | ||
"""Bria ControlNet info""" | ||
|
||
control: BriaControlNetField = OutputField(description=FieldDescriptions.control) | ||
|
||
|
||
@invocation( | ||
"bria_controlnet", | ||
title="ControlNet - Bria", | ||
tags=["controlnet", "bria"], | ||
category="controlnet", | ||
version="1.0.0", | ||
classification=Classification.Prototype, | ||
) | ||
class BriaControlNetInvocation(BaseInvocation, WithMetadata, WithBoard): | ||
"""Collect Bria ControlNet info to pass to denoiser node.""" | ||
|
||
control_image: ImageField = InputField(description="The control image") | ||
control_model: ModelIdentifierField = InputField( | ||
description=FieldDescriptions.controlnet_model, ui_type=UIType.BriaControlNetModel | ||
) | ||
control_mode: BRIA_CONTROL_MODES = InputField(default="depth", description="The mode of the ControlNet") | ||
control_weight: float = InputField(default=1.0, ge=-1, le=2, description="The weight given to the ControlNet") | ||
|
||
def invoke(self, context: InvocationContext) -> BriaControlNetOutput: | ||
image_in = resize_img(context.images.get_pil(self.control_image.image_name)) | ||
if self.control_mode == "colorgrid": | ||
control_image = tile(64, image_in) | ||
elif self.control_mode == "recolor": | ||
control_image = convert_to_grayscale(image_in) | ||
elif self.control_mode == "tile": | ||
control_image = tile(16, image_in) | ||
else: | ||
control_image = image_in | ||
|
||
control_image = resize_img(control_image) | ||
image_dto = context.images.save(image=control_image) | ||
return BriaControlNetOutput( | ||
control=BriaControlNetField( | ||
image=ImageField(image_name=image_dto.image_name), | ||
model=self.control_model, | ||
mode=self.control_mode, | ||
conditioning_scale=self.control_weight, | ||
), | ||
) | ||
|
||
|
||
RATIO_CONFIGS_1024 = { | ||
0.6666666666666666: {"width": 832, "height": 1248}, | ||
0.7432432432432432: {"width": 880, "height": 1184}, | ||
0.8028169014084507: {"width": 912, "height": 1136}, | ||
1.0: {"width": 1024, "height": 1024}, | ||
1.2456140350877194: {"width": 1136, "height": 912}, | ||
1.3454545454545455: {"width": 1184, "height": 880}, | ||
1.4339622641509433: {"width": 1216, "height": 848}, | ||
1.5: {"width": 1248, "height": 832}, | ||
1.5490196078431373: {"width": 1264, "height": 816}, | ||
1.62: {"width": 1296, "height": 800}, | ||
1.7708333333333333: {"width": 1360, "height": 768}, | ||
} | ||
|
||
|
||
|
||
def convert_to_grayscale(image: Image.Image) -> Image.Image: | ||
gray_image = image.convert("L").convert("RGB") | ||
return gray_image | ||
|
||
|
||
def tile(downscale_factor: int, input_image: Image.Image) -> Image.Image: | ||
control_image = input_image.resize( | ||
(input_image.size[0] // downscale_factor, input_image.size[1] // downscale_factor) | ||
).resize(input_image.size, Image.Resampling.NEAREST) | ||
return control_image | ||
|
||
|
||
def resize_img(control_image: Image.Image) -> Image.Image: | ||
image_ratio = control_image.width / control_image.height | ||
ratio = min(RATIO_CONFIGS_1024.keys(), key=lambda k: abs(k - image_ratio)) | ||
to_height = RATIO_CONFIGS_1024[ratio]["height"] | ||
to_width = RATIO_CONFIGS_1024[ratio]["width"] | ||
resized_image = control_image.resize((to_width, to_height), resample=Image.Resampling.LANCZOS) | ||
return resized_image |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
import torch | ||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL | ||
from PIL import Image | ||
|
||
from invokeai.app.invocations.model import VAEField | ||
from invokeai.app.invocations.primitives import FieldDescriptions, Input, InputField, LatentsField | ||
from invokeai.app.services.shared.invocation_context import InvocationContext | ||
from invokeai.invocation_api import BaseInvocation, Classification, ImageOutput, invocation | ||
|
||
|
||
@invocation( | ||
"bria_decoder", | ||
title="Decoder - Bria", | ||
tags=["image", "bria"], | ||
category="image", | ||
version="1.0.0", | ||
classification=Classification.Prototype, | ||
) | ||
class BriaDecoderInvocation(BaseInvocation): | ||
""" | ||
Decode Bria latents to an image. | ||
""" | ||
|
||
vae: VAEField = InputField( | ||
description=FieldDescriptions.vae, | ||
input=Input.Connection, | ||
) | ||
latents: LatentsField = InputField( | ||
description=FieldDescriptions.latents, | ||
input=Input.Connection, | ||
) | ||
|
||
@torch.no_grad() | ||
def invoke(self, context: InvocationContext) -> ImageOutput: | ||
latents = context.tensors.load(self.latents.latents_name) | ||
latents = latents.view(1, 64, 64, 4, 2, 2).permute(0, 3, 1, 4, 2, 5).reshape(1, 4, 128, 128) | ||
|
||
with context.models.load(self.vae.vae) as vae: | ||
assert isinstance(vae, AutoencoderKL) | ||
latents = latents / vae.config.scaling_factor | ||
latents = latents.to(device=vae.device, dtype=vae.dtype) | ||
|
||
decoded_output = vae.decode(latents) | ||
image = decoded_output.sample | ||
|
||
# Convert to numpy with proper gradient handling | ||
image = ((image.clamp(-1, 1) + 1) / 2 * 255).cpu().detach().permute(0, 2, 3, 1).numpy().astype("uint8")[0] | ||
img = Image.fromarray(image) | ||
image_dto = context.images.save(image=img) | ||
return ImageOutput.build(image_dto) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
from typing import Callable, List, Tuple | ||
|
||
import torch | ||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL | ||
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler | ||
|
||
from invokeai.app.invocations.bria_controlnet import BriaControlNetField | ||
from invokeai.app.invocations.bria_latent_noise import BriaLatentNoiseOutput | ||
from invokeai.app.invocations.fields import FluxConditioningField, Input, InputField, LatentsField, OutputField | ||
from invokeai.app.invocations.model import SubModelType, T5EncoderField, TransformerField, VAEField | ||
from invokeai.app.invocations.primitives import BaseInvocationOutput, FieldDescriptions | ||
from invokeai.app.services.shared.invocation_context import InvocationContext | ||
from invokeai.backend.bria.controlnet_bria import BriaControlModes, BriaMultiControlNetModel | ||
from invokeai.backend.bria.controlnet_utils import prepare_control_images | ||
from invokeai.backend.bria.pipeline_bria_controlnet import BriaControlNetPipeline | ||
from invokeai.backend.bria.transformer_bria import BriaTransformer2DModel | ||
from invokeai.backend.model_manager.taxonomy import BaseModelType | ||
from invokeai.backend.stable_diffusion.extensions.preview import PipelineIntermediateState | ||
from invokeai.invocation_api import BaseInvocation, Classification, invocation, invocation_output | ||
|
||
|
||
@invocation_output("bria_denoise_output") | ||
class BriaDenoiseInvocationOutput(BaseInvocationOutput): | ||
latents: LatentsField = OutputField(description=FieldDescriptions.latents) | ||
|
||
|
||
@invocation( | ||
"bria_denoise", | ||
title="Denoise - Bria", | ||
tags=["image", "bria"], | ||
category="image", | ||
version="1.0.0", | ||
classification=Classification.Prototype, | ||
) | ||
class BriaDenoiseInvocation(BaseInvocation): | ||
|
||
""" | ||
Denoise Bria latents using a Bria Pipeline. | ||
""" | ||
|
||
num_steps: int = InputField( | ||
default=30, title="Number of Steps", description="The number of steps to use for the denoiser" | ||
) | ||
guidance_scale: float = InputField( | ||
default=5.0, title="Guidance Scale", description="The guidance scale to use for the denoiser" | ||
) | ||
|
||
transformer: TransformerField = InputField( | ||
description="Bria model (Transformer) to load", | ||
input=Input.Connection, | ||
title="Transformer", | ||
) | ||
t5_encoder: T5EncoderField = InputField( | ||
title="T5Encoder", | ||
description=FieldDescriptions.t5_encoder, | ||
input=Input.Connection, | ||
) | ||
vae: VAEField = InputField( | ||
description=FieldDescriptions.vae, | ||
input=Input.Connection, | ||
title="VAE", | ||
) | ||
height: int = InputField( | ||
default=1024, | ||
title="Height", | ||
description="The height of the output image", | ||
) | ||
width: int = InputField( | ||
default=1024, | ||
title="Width", | ||
description="The width of the output image", | ||
) | ||
latent_noise: BriaLatentNoiseOutput = InputField( | ||
description="Latent noise to denoise", | ||
input=Input.Connection, | ||
title="Latent Noise", | ||
) | ||
pos_embeds: FluxConditioningField = InputField( | ||
description="Positive Prompt Embeds", | ||
input=Input.Connection, | ||
title="Positive Prompt Embeds", | ||
) | ||
neg_embeds: FluxConditioningField = InputField( | ||
description="Negative Prompt Embeds", | ||
input=Input.Connection, | ||
title="Negative Prompt Embeds", | ||
) | ||
control: BriaControlNetField | list[BriaControlNetField] | None = InputField( | ||
description="ControlNet", | ||
input=Input.Connection, | ||
title="ControlNet", | ||
default=None, | ||
) | ||
|
||
@torch.no_grad() | ||
def invoke(self, context: InvocationContext) -> BriaDenoiseInvocationOutput: | ||
latents = context.tensors.load(self.latent_noise.latents.latents_name) | ||
pos_embeds = context.tensors.load(self.pos_embeds.conditioning_name) | ||
neg_embeds = context.tensors.load(self.neg_embeds.conditioning_name) | ||
latent_image_ids = context.tensors.load(self.latent_noise.latent_image_ids.latents_name) | ||
scheduler_identifier = self.transformer.transformer.model_copy(update={"submodel_type": SubModelType.Scheduler}) | ||
|
||
device = None | ||
dtype = None | ||
with ( | ||
context.models.load(self.transformer.transformer) as transformer, | ||
context.models.load(scheduler_identifier) as scheduler, | ||
context.models.load(self.vae.vae) as vae, | ||
context.models.load(self.t5_encoder.text_encoder) as t5_encoder, | ||
context.models.load(self.t5_encoder.tokenizer) as t5_tokenizer, | ||
): | ||
assert isinstance(transformer, BriaTransformer2DModel) | ||
assert isinstance(scheduler, FlowMatchEulerDiscreteScheduler) | ||
assert isinstance(vae, AutoencoderKL) | ||
dtype = transformer.dtype | ||
device = transformer.device | ||
latents, pos_embeds, neg_embeds = (x.to(device, dtype) for x in (latents, pos_embeds, neg_embeds)) | ||
|
||
control_model, control_images, control_modes, control_scales = None, None, None, None | ||
if self.control is not None: | ||
control_model, control_images, control_modes, control_scales = self._prepare_multi_control( | ||
context=context, | ||
vae=vae, | ||
width=self.width, | ||
height=self.height, | ||
device=vae.device, | ||
) | ||
|
||
|
||
pipeline = BriaControlNetPipeline( | ||
psychedelicious marked this conversation as resolved.
Show resolved
Hide resolved
|
||
transformer=transformer, | ||
scheduler=scheduler, | ||
vae=vae, | ||
text_encoder=t5_encoder, | ||
tokenizer=t5_tokenizer, | ||
controlnet=control_model, | ||
ilanbria marked this conversation as resolved.
Show resolved
Hide resolved
|
||
) | ||
pipeline.to(device=transformer.device, dtype=transformer.dtype) | ||
|
||
output_latents = pipeline( | ||
control_image=control_images, | ||
control_mode=control_modes, | ||
width=self.width, | ||
height=self.height, | ||
controlnet_conditioning_scale=control_scales, | ||
num_inference_steps=self.num_steps, | ||
max_sequence_length=128, | ||
guidance_scale=self.guidance_scale, | ||
latents=latents, | ||
latent_image_ids=latent_image_ids, | ||
prompt_embeds=pos_embeds, | ||
negative_prompt_embeds=neg_embeds, | ||
output_type="latent", | ||
step_callback=_build_step_callback(context), | ||
)[0] | ||
|
||
|
||
|
||
assert isinstance(output_latents, torch.Tensor) | ||
saved_input_latents_tensor = context.tensors.save(output_latents) | ||
return BriaDenoiseInvocationOutput(latents=LatentsField(latents_name=saved_input_latents_tensor)) | ||
|
||
def _prepare_multi_control( | ||
self, context: InvocationContext, vae: AutoencoderKL, width: int, height: int, device: torch.device | ||
) -> Tuple[BriaMultiControlNetModel, List[torch.Tensor], List[int], List[float]]: | ||
control = self.control if isinstance(self.control, list) else [self.control] | ||
control_images, control_models, control_modes, control_scales = [], [], [], [] | ||
for controlnet in control: | ||
if controlnet is not None: | ||
control_models.append(context.models.load(controlnet.model).model) | ||
control_modes.append(BriaControlModes[controlnet.mode].value) | ||
control_scales.append(controlnet.conditioning_scale) | ||
try: | ||
control_images.append(context.images.get_pil(controlnet.image.image_name)) | ||
except Exception: | ||
raise FileNotFoundError( | ||
f"Control image {controlnet.image.image_name} not found. Make sure not to delete the preprocessed image before finishing the pipeline." | ||
) | ||
|
||
control_model = BriaMultiControlNetModel(control_models).to(device) | ||
tensored_control_images, tensored_control_modes = prepare_control_images( | ||
vae=vae, | ||
control_images=control_images, | ||
control_modes=control_modes, | ||
width=width, | ||
height=height, | ||
device=device, | ||
) | ||
return control_model, tensored_control_images, tensored_control_modes, control_scales | ||
|
||
|
||
def _build_step_callback(context: InvocationContext) -> Callable[[PipelineIntermediateState], None]: | ||
def step_callback(state: PipelineIntermediateState) -> None: | ||
return | ||
context.util.sd_step_callback(state, BaseModelType.Bria) | ||
|
||
return step_callback |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I see the Bria pipeline supports a step callback, but it isn't implemented here. We need to show the user stepwise progress for denoising, and ideally emit progress events with preview images.
See
invokeai/app/util/step_callback.py
for the logic to generate preview images from latents and the FLUX node for an example of how to use the API to emit the events.Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
To use the
step_callback
, I need to generateLATENT_RGB_FACTORS
for Bria. However, I'm not sure what type of train/test images I should use withgenerate_linear_approximation
to achieve this. Do you have any suggestions on which images would be good for that?