Skip to content

Integrate Bria 3.1/3.2 Models and ControlNet Pipelines into InvokeAI #8248

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 12 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
154 changes: 154 additions & 0 deletions invokeai/app/invocations/bria_controlnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
import cv2
import numpy as np
from PIL import Image
from pydantic import BaseModel, Field

from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
InputField,
OutputField,
UIType,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.bria.controlnet_aux.open_pose import Body, Face, Hand, OpenposeDetector
from invokeai.backend.bria.controlnet_bria import BRIA_CONTROL_MODES
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.invocation_api import Classification, ImageOutput

DEPTH_SMALL_V2_URL = "depth-anything/Depth-Anything-V2-Small-hf"
HF_LLLYASVIEL = "https://huggingface.co/lllyasviel/Annotators/resolve/main/"

class BriaControlNetField(BaseModel):
image: ImageField = Field(description="The control image")
model: ModelIdentifierField = Field(description="The ControlNet model to use")
mode: BRIA_CONTROL_MODES = Field(description="The mode of the ControlNet")
conditioning_scale: float = Field(description="The weight given to the ControlNet")

@invocation_output("bria_controlnet_output")
class BriaControlNetOutput(BaseInvocationOutput):
"""Bria ControlNet info"""

control: BriaControlNetField = OutputField(description=FieldDescriptions.control)
preprocessed_images: ImageField = OutputField(description="The preprocessed control image")


@invocation(
"bria_controlnet",
title="ControlNet - Bria",
tags=["controlnet", "bria"],
category="controlnet",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaControlNetInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Collect Bria ControlNet info to pass to denoiser node."""

control_image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.BriaControlNetModel
)
control_mode: BRIA_CONTROL_MODES = InputField(
default="depth", description="The mode of the ControlNet"
)
control_weight: float = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
)

def invoke(self, context: InvocationContext) -> BriaControlNetOutput:
image_in = resize_img(context.images.get_pil(self.control_image.image_name))
if self.control_mode == "canny":
control_image = extract_canny(image_in)
elif self.control_mode == "depth":
control_image = extract_depth(image_in, context)
elif self.control_mode == "pose":
control_image = extract_openpose(image_in, context)
elif self.control_mode == "colorgrid":
control_image = tile(64, image_in)
elif self.control_mode == "recolor":
control_image = convert_to_grayscale(image_in)
elif self.control_mode == "tile":
control_image = tile(16, image_in)

control_image = resize_img(control_image)
image_dto = context.images.save(image=control_image)
image_output = ImageOutput.build(image_dto)
return BriaControlNetOutput(
preprocessed_images=image_output.image,
control=BriaControlNetField(
image=ImageField(image_name=image_dto.image_name),
model=self.control_model,
mode=self.control_mode,
conditioning_scale=self.control_weight,
),
)


RATIO_CONFIGS_1024 = {
0.6666666666666666: {"width": 832, "height": 1248},
0.7432432432432432: {"width": 880, "height": 1184},
0.8028169014084507: {"width": 912, "height": 1136},
1.0: {"width": 1024, "height": 1024},
1.2456140350877194: {"width": 1136, "height": 912},
1.3454545454545455: {"width": 1184, "height": 880},
1.4339622641509433: {"width": 1216, "height": 848},
1.5: {"width": 1248, "height": 832},
1.5490196078431373: {"width": 1264, "height": 816},
1.62: {"width": 1296, "height": 800},
1.7708333333333333: {"width": 1360, "height": 768},
}

def extract_depth(image: Image.Image, context: InvocationContext):
loaded_model = context.models.load_remote_model(DEPTH_SMALL_V2_URL, DepthAnythingPipeline.load_model)

with loaded_model as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
depth_map = depth_anything_detector.generate_depth(image)
return depth_map

def extract_openpose(image: Image.Image, context: InvocationContext):
body_model = context.models.load_remote_model(f"{HF_LLLYASVIEL}body_pose_model.pth", Body)
hand_model = context.models.load_remote_model(f"{HF_LLLYASVIEL}hand_pose_model.pth", Hand)
face_model = context.models.load_remote_model(f"{HF_LLLYASVIEL}facenet.pth", Face)

with body_model as body_model, hand_model as hand_model, face_model as face_model:
open_pose_model = OpenposeDetector(body_model, hand_model, face_model)
processed_image_open_pose = open_pose_model(image, hand_and_face=True)

processed_image_open_pose = processed_image_open_pose.resize(image.size)
return processed_image_open_pose


def extract_canny(input_image):
image = np.array(input_image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
return canny_image


def convert_to_grayscale(image):
gray_image = image.convert('L').convert('RGB')
return gray_image

def tile(downscale_factor, input_image):
control_image = input_image.resize((input_image.size[0] // downscale_factor, input_image.size[1] // downscale_factor)).resize(input_image.size, Image.Resampling.NEAREST)
return control_image

def resize_img(control_image):
image_ratio = control_image.width / control_image.height
ratio = min(RATIO_CONFIGS_1024.keys(), key=lambda k: abs(k - image_ratio))
to_height = RATIO_CONFIGS_1024[ratio]["height"]
to_width = RATIO_CONFIGS_1024[ratio]["width"]
resized_image = control_image.resize((to_width, to_height), resample=Image.Resampling.LANCZOS)
return resized_image
46 changes: 46 additions & 0 deletions invokeai/app/invocations/bria_decoder.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from PIL import Image

from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import FieldDescriptions, Input, InputField, LatentsField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.invocation_api import BaseInvocation, Classification, ImageOutput, invocation


@invocation(
"bria_decoder",
title="Decoder - Bria",
tags=["image", "bria"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaDecoderInvocation(BaseInvocation):
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)

@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
latents = latents.view(1, 64, 64, 4, 2, 2).permute(0, 3, 1, 4, 2, 5).reshape(1, 4, 128, 128)

with context.models.load(self.vae.vae) as vae:
assert isinstance(vae, AutoencoderKL)
latents = (latents / vae.config.scaling_factor)
latents = latents.to(device=vae.device, dtype=vae.dtype)

decoded_output = vae.decode(latents)
image = decoded_output.sample

# Convert to numpy with proper gradient handling
image = ((image.clamp(-1, 1) + 1) / 2 * 255).cpu().detach().permute(0, 2, 3, 1).numpy().astype("uint8")[0]
img = Image.fromarray(image)
image_dto = context.images.save(image=img)
return ImageOutput.build(image_dto)
185 changes: 185 additions & 0 deletions invokeai/app/invocations/bria_denoiser.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
from typing import List, Tuple

import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler

from invokeai.app.invocations.bria_controlnet import BriaControlNetField
from invokeai.app.invocations.fields import Input, InputField, LatentsField, OutputField
from invokeai.app.invocations.model import SubModelType, T5EncoderField, TransformerField, VAEField
from invokeai.app.invocations.primitives import BaseInvocationOutput, FieldDescriptions
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.bria.controlnet_bria import BriaControlModes, BriaMultiControlNetModel
from invokeai.backend.bria.controlnet_utils import prepare_control_images
from invokeai.backend.bria.pipeline_bria_controlnet import BriaControlNetPipeline
from invokeai.backend.bria.transformer_bria import BriaTransformer2DModel
from invokeai.invocation_api import BaseInvocation, Classification, invocation, invocation_output


@invocation_output("bria_denoise_output")
class BriaDenoiseInvocationOutput(BaseInvocationOutput):
latents: LatentsField = OutputField(description=FieldDescriptions.latents)


@invocation(
"bria_denoise",
title="Denoise - Bria",
tags=["image", "bria"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaDenoiseInvocation(BaseInvocation):
num_steps: int = InputField(
default=30, title="Number of Steps", description="The number of steps to use for the denoiser"
)
guidance_scale: float = InputField(
default=5.0, title="Guidance Scale", description="The guidance scale to use for the denoiser"
)

transformer: TransformerField = InputField(
description="Bria model (Transformer) to load",
input=Input.Connection,
title="Transformer",
)
t5_encoder: T5EncoderField = InputField(
title="T5Encoder",
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
title="VAE",
)
latents: LatentsField = InputField(
description="Latents to denoise",
input=Input.Connection,
title="Latents",
)
latent_image_ids: LatentsField = InputField(
description="Latent Image IDs to denoise",
input=Input.Connection,
title="Latent Image IDs",
)
pos_embeds: LatentsField = InputField(
description="Positive Prompt Embeds",
input=Input.Connection,
title="Positive Prompt Embeds",
)
neg_embeds: LatentsField = InputField(
description="Negative Prompt Embeds",
input=Input.Connection,
title="Negative Prompt Embeds",
)
text_ids: LatentsField = InputField(
description="Text IDs",
input=Input.Connection,
title="Text IDs",
)
control: BriaControlNetField | list[BriaControlNetField] | None = InputField(
description="ControlNet",
input=Input.Connection,
title="ControlNet",
default = None,
)

@torch.no_grad()
def invoke(self, context: InvocationContext) -> BriaDenoiseInvocationOutput:
latents = context.tensors.load(self.latents.latents_name)
pos_embeds = context.tensors.load(self.pos_embeds.latents_name)
neg_embeds = context.tensors.load(self.neg_embeds.latents_name)
text_ids = context.tensors.load(self.text_ids.latents_name)
latent_image_ids = context.tensors.load(self.latent_image_ids.latents_name)
scheduler_identifier = self.transformer.transformer.model_copy(update={"submodel_type": SubModelType.Scheduler})

device = None
dtype = None
with (
context.models.load(self.transformer.transformer) as transformer,
context.models.load(scheduler_identifier) as scheduler,
context.models.load(self.vae.vae) as vae,
context.models.load(self.t5_encoder.text_encoder) as t5_encoder,
context.models.load(self.t5_encoder.tokenizer) as t5_tokenizer,
):
assert isinstance(transformer, BriaTransformer2DModel)
assert isinstance(scheduler, FlowMatchEulerDiscreteScheduler)
assert isinstance(vae, AutoencoderKL)
dtype = transformer.dtype
device = transformer.device
latents, pos_embeds, neg_embeds = (x.to(device, dtype) for x in (latents, pos_embeds, neg_embeds))

control_model, control_images, control_modes, control_scales = None, None, None, None
if self.control is not None:
control_model, control_images, control_modes, control_scales = self._prepare_multi_control(
context=context,
vae=vae,
width=1024,
height=1024,
device=vae.device,
)

pipeline = BriaControlNetPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=t5_encoder,
tokenizer=t5_tokenizer,
controlnet=control_model,
)
pipeline.to(device=transformer.device, dtype=transformer.dtype)

latents = pipeline(
control_image=control_images,
control_mode=control_modes,
width=1024,
height=1024,
controlnet_conditioning_scale=control_scales,
num_inference_steps=self.num_steps,
max_sequence_length=128,
guidance_scale=self.guidance_scale,
latents=latents,
latent_image_ids=latent_image_ids,
text_ids=text_ids,
prompt_embeds=pos_embeds,
negative_prompt_embeds=neg_embeds,
output_type="latent",
)[0]

assert isinstance(latents, torch.Tensor)
saved_input_latents_tensor = context.tensors.save(latents)
latents_output = LatentsField(latents_name=saved_input_latents_tensor)
return BriaDenoiseInvocationOutput(latents=latents_output)


def _prepare_multi_control(
self,
context: InvocationContext,
vae: AutoencoderKL,
width: int,
height: int,
device: torch.device
) -> Tuple[BriaMultiControlNetModel, List[torch.Tensor], List[torch.Tensor], List[float]]:

control = self.control if isinstance(self.control, list) else [self.control]
control_images, control_models, control_modes, control_scales = [], [], [], []
for controlnet in control:
if controlnet is not None:
control_models.append(context.models.load(controlnet.model).model)
control_modes.append(BriaControlModes[controlnet.mode].value)
control_scales.append(controlnet.conditioning_scale)
try:
control_images.append(context.images.get_pil(controlnet.image.image_name))
except Exception:
raise FileNotFoundError(f"Control image {controlnet.image.image_name} not found. Make sure not to delete the preprocessed image before finishing the pipeline.")

control_model = BriaMultiControlNetModel(control_models).to(device)
tensored_control_images, tensored_control_modes = prepare_control_images(
vae=vae,
control_images=control_images,
control_modes=control_modes,
width=width,
height=height,
device=device,
)
return control_model, tensored_control_images, tensored_control_modes, control_scales
Loading
Loading