Skip to content

implemented dynamic filtering option per #174 #204

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: dev
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions modules/local/scanpy/filter/main.nf
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ process SCANPY_FILTER {
val(min_counts_gene)
val(min_counts_cell)
val(max_mito_percentage)
val dynamic_filtering

output:
tuple val(meta), path("${prefix}.h5ad"), emit: h5ad
Expand Down
68 changes: 55 additions & 13 deletions modules/local/scanpy/filter/templates/filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,37 +6,79 @@
os.environ["MPLCONFIGDIR"] = "./tmp/mpl"
os.environ["NUMBA_CACHE_DIR"] = "./tmp/numba"

import yaml
import numpy as np
import scanpy as sc
import yaml
from scipy.stats import median_abs_deviation
from threadpoolctl import threadpool_limits

threadpool_limits(int("${task.cpus}"))
sc.settings.n_jobs = int("${task.cpus}")


def is_outlier(adata, metric: str, nmads: int):
"""Identify outliers using MAD (Median Absolute Deviation) method."""
M = adata.obs[metric]
outlier = (M < np.median(M) - nmads * median_abs_deviation(M)) | (
np.median(M) + nmads * median_abs_deviation(M) < M
)
return outlier


adata = sc.read_h5ad("${h5ad}")
prefix = "${prefix}"

adata.var["mt"] = adata.var_names.str.lower().str.startswith("mt-")
# mitochondrial genes
adata.var["mt"] = adata.var_names.str.startswith("MT-")
# ribosomal genes
adata.var["ribo"] = adata.var_names.str.startswith(("RPS", "RPL"))
# hemoglobin genes.
adata.var["hb"] = adata.var_names.str.contains("^HB[^(P)]")

sc.pp.calculate_qc_metrics(
adata, qc_vars=["mt"], percent_top=None, log1p=False, inplace=True
adata, qc_vars=["mt", "ribo", "hb"], percent_top=[20], log1p=True, inplace=True
)
adata = adata[adata.obs.pct_counts_mt < int("${max_mito_percentage}"), :].copy()

sc.pp.filter_cells(adata, min_counts=int("${min_counts_cell}"))
sc.pp.filter_genes(adata, min_counts=int("${min_counts_gene}"))
if "${dynamic_filtering}" == "true":
# Dynamic filtering using MAD strategy
print("Applying dynamic filtering using MAD strategy...")

# Filter cells based on general QC metrics (5 MADs)
adata.obs["outlier"] = (
is_outlier(adata, "log1p_total_counts", 5)
| is_outlier(adata, "log1p_n_genes_by_counts", 5)
| is_outlier(adata, "pct_counts_in_top_20_genes", 5)
)

sc.pp.filter_cells(adata, min_genes=int("${min_genes}"))
sc.pp.filter_genes(adata, min_cells=int("${min_cells}"))
# Filter mitochondrial outliers (3 MADs) with additional max threshold
adata.obs["mt_outlier"] = is_outlier(adata, "pct_counts_mt", 3) | (
adata.obs["pct_counts_mt"] > int("${max_mito_percentage}")
)

# Apply filtering
print(f"Total number of cells before filtering: {adata.n_obs}")
adata = adata[(~adata.obs.outlier) & (~adata.obs.mt_outlier)].copy()
print(f"Number of cells after dynamic filtering: {adata.n_obs}")

else:
# Static filtering using user-defined thresholds
print("Applying static filtering using user-defined thresholds...")

# Apply mitochondrial filtering
adata = adata[adata.obs.pct_counts_mt < int("${max_mito_percentage}"), :].copy()

# Apply count and gene filtering
sc.pp.filter_cells(adata, min_counts=int("${min_counts_cell}"))
sc.pp.filter_genes(adata, min_counts=int("${min_counts_gene}"))

sc.pp.filter_cells(adata, min_genes=int("${min_genes}"))
sc.pp.filter_genes(adata, min_cells=int("${min_cells}"))

adata.write_h5ad(f"{prefix}.h5ad")

# Versions

versions = {
"${task.process}": {
"python": platform.python_version(),
"scanpy": sc.__version__
}
"${task.process}": {"python": platform.python_version(), "scanpy": sc.__version__}
}

with open("versions.yml", "w") as f:
Expand Down
2 changes: 2 additions & 0 deletions modules/local/scanpy/filter/tests/main.nf.test
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ nextflow_process {
input[3] = 50
input[4] = 50
input[5] = 50
input[6] = false
"""
}
}
Expand Down Expand Up @@ -58,6 +59,7 @@ nextflow_process {
input[3] = 50
input[4] = 50
input[5] = 50
input[6] = false
"""
}
}
Expand Down
1 change: 1 addition & 0 deletions nextflow.config
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ params {
doublet_detection = 'scrublet'
doublet_detection_threshold = 1
cellbender_epochs = 150
dynamic_filtering = false

// Integration options
integration_methods = 'scvi'
Expand Down
4 changes: 4 additions & 0 deletions nextflow_schema.json
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,10 @@
"type": "integer",
"default": 150,
"description": "Number of epochs to train the CellBender model"
},
"dynamic_filtering": {
"type": "boolean",
"description": "Employ deviation-based filtering"
}
}
},
Expand Down
2 changes: 1 addition & 1 deletion subworkflows/local/integrate.nf
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ workflow INTEGRATE {
ch_var = ch_var.mix(SCANPY_HVGS.out.var)

// Filter out empty cells from the AnnData object
SCANPY_FILTER(ch_h5ad_hvg, 1, 0, 0, 0, 100)
SCANPY_FILTER(ch_h5ad_hvg, 1, 0, 0, 0, 100, params.dynamic_filtering)
ch_h5ad_hvg = SCANPY_FILTER.out.h5ad
ch_versions = ch_versions.mix(SCANPY_FILTER.out.versions)
}
Expand Down
2 changes: 1 addition & 1 deletion subworkflows/local/quality_control/main.nf
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ workflow QUALITY_CONTROL {
min_counts_cell: meta.min_counts_cell ?: 0
max_mito_percentage: meta.max_mito_percentage ?: 100
}
SCANPY_FILTER(ch_filtering.h5ad, ch_filtering.min_genes, ch_filtering.min_cells, ch_filtering.min_counts_gene, ch_filtering.min_counts_cell, ch_filtering.max_mito_percentage)
SCANPY_FILTER(ch_filtering.h5ad, ch_filtering.min_genes, ch_filtering.min_cells, ch_filtering.min_counts_gene, ch_filtering.min_counts_cell, ch_filtering.max_mito_percentage, params.dynamic_filtering)
ch_h5ad = SCANPY_FILTER.out.h5ad
ch_versions = ch_versions.mix(SCANPY_FILTER.out.versions)

Expand Down
Loading