Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 20 additions & 18 deletions content/number-theory/phiFunction.h
Original file line number Diff line number Diff line change
@@ -1,27 +1,29 @@
/**
* Author: Håkan Terelius
* Date: 2009-09-25
* Author:
* Date:
* License: CC0
* Source: http://en.wikipedia.org/wiki/Euler's_totient_function
* Description: \emph{Euler's $\phi$} function is defined as $\phi(n):=\#$ of positive integers $\leq n$ that are coprime with $n$.
* $\phi(1)=1$, $p$ prime $\Rightarrow \phi(p^k)=(p-1)p^{k-1}$, $m,n$ coprime $\Rightarrow \phi(mn)=\phi(m)\phi(n)$.
* If $n=p_1^{k_1}p_2^{k_2} ... p_r^{k_r}$ then $\phi(n) = (p_1-1)p_1^{k_1-1}...(p_r-1)p_r^{k_r-1}$.
* $\phi(n)=n \cdot \prod_{p|n}(1-1/p)$.
* Source:
* Description: Multiplicative functions
*
* $\sum_{d|n} \phi(d) = n$, $\sum_{1\leq k \leq n, \gcd(k,n)=1} k = n \phi(n)/2, n>1$
*
* \textbf{Euler's thm}: $a,n$ coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$.
* Euler's totient: $\phi(1) = 1, \phi(p) = p - 1, \phi(ip) = \phi(i)\phi(p)$
*
* Mobius function: $\mu(1) = 1, \mu(p) = -1, \mu(ip) = 0$
*
* \textbf{Fermat's little thm}: $p$ prime $\Rightarrow a^{p-1} \equiv 1 \pmod{p}$ $\forall a$.
* Status: Tested
*/
#pragma once

const int LIM = 5000000;
int phi[LIM];

void calculatePhi() {
rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
for(int i = 3; i < LIM; i += 2) if(phi[i] == i)
for(int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;
vector<int> calcMult(int n) {
vector<char> sieve(n);
vector<int> phi(n), pr; phi[1] = 1; // f(1)
rep(i, 2, n) {
if (!sieve[i]) pr.push_back(i), phi[i] = i - 1; // f(p)
trav(j, pr) {
if (i * j >= n) break;
sieve[i * j] = true;
if (i % j == 0) { phi[i * j] = phi[i] * j; break; } // f(i*p)
phi[i * j] = phi[i] * phi[j];
}
}
return phi;
}