Skip to content

This platform combines real-world athlete video analysis with 3D biomechanical modeling and conversational AI to create an unprecedented sports science exploration experience.

License

Notifications You must be signed in to change notification settings

fullscreen-triangle/space-computer

Repository files navigation

Space Computer

Platform Logo

AI-Powered 3D Biomechanical Analysis with Video Integration

Transform elite athlete movement data into interactive, intelligent analysis experiences

License: MIT TypeScript React Hugging Face Remotion Python FastAPI JavaScript WebGL


🌟 System Overview

This platform combines real-world athlete video analysis with 3D biomechanical modeling and conversational AI to create an unprecedented sports science exploration experience. Featuring world-class athletes including Usain Bolt, Didier Drogba, Derek Chisora, and more across multiple sports disciplines.

Core Value Proposition

  • πŸ“Ή Video Integration: Synchronized playback of annotated athlete videos with 3D pose models
  • πŸ€– AI-Powered Analysis: Click anywhere to ask intelligent questions about movement biomechanics
  • 🎯 Real-Time Insights: Live metrics, joint analysis, and technique recommendations
  • πŸƒβ€β™‚οΈ Elite Athlete Data: World-record holders and professional athletes across 6+ sports
  • πŸ” Pose Understanding Verification: AI validates its comprehension through image generation before analysis
  • ⚑ Turbulance Scripting: Optional advanced probabilistic analysis using domain-specific language for complex biomechanical research

πŸ—οΈ System Architecture

graph TB
    subgraph "Frontend Layer"
        A[Space Computer Platform]
        A1[Video Reference Component]
        A2[3D Model Visualization]
        A3[AI Chat Interface]
        A4[Real-time Metrics]
        A5[Verification Status Display]
    end
    
    subgraph "Data Layer" 
        B[Biomechanical Data]
        B1[Pose Detection Models]
        B2[Video Annotations]
        B3[Posture Analysis]
        B4[Elite Athlete Dataset]
    end
    
    subgraph "Backend Services"
        C[AI Orchestration]
        C1[Pose Processing API]
        C2[Video Analysis Service]
        C3[Context-Aware AI]
        C4[Real-time Sync Engine]
        C5[Pose Understanding Verifier]
        C6[Turbulance Engine]
    end
    
    subgraph "Infrastructure"
        D[Data Processing]
        D1[GPU Acceleration]
        D2[Physics Simulation]
        D3[Timeline Synchronization]
        D4[Multi-Sport Classification]
        D5[Image Generation & Similarity]
        D6[Probabilistic Analysis]
    end
    
    A --> B
    B --> C
    C --> D
    A1 --> A2
    A2 --> A3
    A5 --> A3
    B1 --> C1
    B2 --> C2
    B3 --> C3
    B4 --> C4
    C5 --> D5
Loading

πŸŽ₯ Frontend: Space Computer Platform

Core Components

1. Video Reference System

<VideoReference
  videoUrl="/datasources/annotated/usain_bolt_final.mp4"
  athleteName="Usain Bolt" 
  sport="Sprint"
  position="left"           // Flexible layout positioning
  size="half-screen"        // Responsive sizing
  videoDuration={10.5}
/>

Features:

  • βœ… Synchronized Playback: Perfect frame alignment with 3D models
  • βœ… Multi-Layout Support: Split-screen, picture-in-picture, background modes
  • βœ… Athlete Metadata: Real-time display of athlete info and progress
  • βœ… Remotion Integration: Native timeline synchronization

2. 3D Model Visualization

<MannequinViewer 
  modelUrl="/models/elite-athlete.glb"
  pose={currentFramePose}
  highlightedJoints={['left_knee', 'right_knee']}
  onJointSelect={handleJointAnalysis}
/>

Capabilities:

  • 🎯 Real-time Pose Rendering: GPU-accelerated 3D joint positioning
  • πŸ”΄ Interactive Joint Selection: Click any body part for detailed analysis
  • ⚑ Physics Simulation: Realistic biomechanical constraints and forces
  • 🎨 Visual Highlighting: Dynamic joint emphasis and annotation

3. AI Chat Interface

<ChatInterface 
  selectedJoint="left_knee"
  currentMetrics={liveMetrics}
  onAskAboutJoint={(joint, question) => {
    // Context-aware biomechanical analysis
  }}
/>

Intelligence Features:

  • 🧠 Context Awareness: Understands current video frame and 3D pose
  • πŸ’¬ Natural Language: Ask questions in plain English about any movement
  • πŸ“Š Data Integration: AI has access to all biomechanical metrics and pose data
  • 🎯 Sport-Specific Knowledge: Tailored insights for each athletic discipline

4. Pose Understanding Verification

<VerificationStatus
  isVerifying={isVerifying}
  verificationResult={verificationResult}
  onRetryVerification={handleRetry}
  showDetails={true}
/>

Verification Features:

  • πŸ” AI Comprehension Validation: Ensures AI truly understands pose data before analysis
  • 🎨 Image Generation Testing: AI generates visual representation of poses for comparison
  • πŸ“Š Similarity Scoring: CLIP-based comparison between actual and generated pose images
  • ⚑ Real-time Feedback: Instant verification status with confidence metrics
  • πŸ”„ Retry Mechanism: Automatic retry for failed verifications
  • πŸ“ˆ Transparency: Users see verification confidence and similarity scores
<VerificationStatus
  isVerifying={isVerifying}
  verificationResult={verificationResult}
  onRetryVerification={handleRetry}
  showDetails={true}
/>

Verification Features:

  • πŸ” AI Comprehension Validation: Ensures AI truly understands pose data before analysis
  • 🎨 Image Generation Testing: AI generates visual representation of poses for comparison
  • πŸ“Š Similarity Scoring: CLIP-based comparison between actual and generated pose images
  • ⚑ Real-time Feedback: Instant verification status with confidence metrics
  • πŸ”„ Retry Mechanism: Automatic retry for failed verifications
  • πŸ“ˆ Transparency: Users see verification confidence and similarity scores

Real-Time Analysis Panels

Motion Metrics

  • Speed & Acceleration: Live calculation from pose changes
  • Stride Analysis: Length, rate, ground contact timing
  • Vertical Oscillation: Efficiency measurements
  • Symmetry Scoring: Left-right movement balance

Biomechanical Feedback

  • Joint Load Analysis: Forces and moments at each joint
  • Movement Patterns: Coordination and efficiency scoring
  • Technique Recommendations: AI-powered improvement suggestions
  • Comparative Analysis: Performance vs. optimal biomechanics

⚑ Turbulance Scripting (Optional)

Advanced Probabilistic Analysis Engine

For researchers and advanced users requiring sophisticated biomechanical analysis, Space Computer optionally integrates with Turbulance - a domain-specific programming language designed for probabilistic scientific reasoning and evidence-based analysis.

What is Turbulance?

Turbulance is a specialized programming language that combines:

  • Probabilistic Programming: Native uncertainty handling and propagation
  • Evidence-Based Reasoning: Scientific hypothesis testing with quantified confidence
  • Cross-Domain Analysis: Pattern recognition across multiple sports disciplines
  • Metacognitive Analysis: Self-monitoring and adaptive reasoning systems

Key Features

πŸ§ͺ Scientific Propositions

proposition EliteAthleteOptimization:
    motion TechniqueEfficiency("Optimal biomechanics maximize performance output")
    motion InjuryPrevention("Elite techniques minimize long-term injury risk")
    
    within synchronized_multimodal_data:
        given power_transfer_efficiency() > 0.85 with_confidence(0.8):
            support TechniqueEfficiency with_weight(0.9)

πŸ“Š Uncertainty Quantification

// Native uncertainty support
item measurement = 9.81 Β± 0.02  // Gaussian uncertainty
item confidence_interval = [9.79, 9.83] with_confidence(0.95)

// Uncertainty propagation
item calculated_result = complex_calculation(measurement) 
    uncertainty_propagation: monte_carlo(samples: 10000)

🎯 Goal-Oriented Analysis

goal PerformanceOptimization = Goal.new(
    description: "Maximize athletic performance while minimizing injury risk",
    objectives: [
        maximize(power_output) with_weight(0.4),
        minimize(injury_risk) with_weight(0.6)
    ],
    success_threshold: 0.85
)

πŸ”¬ Evidence Integration

evidence BiomechanicalData:
    sources:
        - type: "motion_capture", reliability: 0.95
        - type: "force_plates", reliability: 0.98
    
    processing:
        - name: "noise_reduction", operation: "butterworth_filter"
        - name: "gap_filling", operation: "cubic_spline"

Integration with Space Computer

Rust-Based Engine

  • High Performance: Native Rust implementation for real-time analysis
  • Memory Safe: Zero-cost abstractions with guaranteed memory safety
  • Concurrent Processing: Multi-threaded analysis of complex biomechanical models
  • WebAssembly Ready: Browser-compatible execution for client-side analysis

API Integration

// Frontend Turbulance integration
interface TurbulanceAPI {
  executeScript(script: string): Promise<TurbulanceResult>;
  analyzeAthleteData(athleteId: string, script: string): Promise<BiomechanicalAnalysis>;
  validateProposition(proposition: string, evidence: EvidenceData): Promise<ValidationResult>;
}

Advanced Analysis Capabilities

  • Multi-Sport Comparison: Cross-disciplinary biomechanical pattern analysis
  • Injury Prediction: Long-term injury risk modeling with confidence intervals
  • Performance Optimization: Evidence-based technique recommendations
  • Research Publication: Generate scientific-quality analysis reports

When to Use Turbulance

βœ… Recommended For:

  • Research institutions requiring rigorous scientific analysis
  • Elite athlete training programs needing performance optimization
  • Sports science laboratories conducting multi-athlete studies
  • Advanced users comfortable with programming concepts

⚠️ Optional For:

  • General fitness analysis and basic biomechanical insights
  • Casual athlete performance tracking
  • Simple video analysis without statistical rigor

Example: Elite Sprint Analysis

// Comprehensive sprint biomechanics analysis
proposition SprintOptimization:
    context athletes = ["usain_bolt_final", "asafa_powell_race"]
    
    motion OptimalStartMechanics("Block start maximizes initial acceleration")
    motion DrivePhaseEfficiency("First 30m optimizes power application")
    
    within sprint_phase_segmentation:
        segment start_phase = extract_phase(0, 2):
            given block_angle in optimal_range(42Β°, 48Β°) with_confidence(0.85):
                support OptimalStartMechanics with_weight(0.9)
                
                predicted_improvement: calculate_optimization_potential(
                    current_angles: get_athlete_angles(),
                    optimal_ranges: [[42Β°, 48Β°]],
                    athlete_anthropometrics: get_athlete_dimensions()
                )

βš™οΈ Backend Services

1. Data Processing Pipeline

Pose Detection Service

interface PoseDetectionAPI {
  processVideo(videoFile: File): Promise<PoseData[]>;
  extractKeyframes(timestamps: number[]): Promise<KeyframeData>;
  analyzeBiomechanics(poses: PoseData[]): Promise<BiomechanicalMetrics>;
}

Processing Chain:

  1. Video Ingestion: Accept MP4/MOV athlete footage
  2. Pose Extraction: MediaPipe/OpenPose landmark detection
  3. 3D Reconstruction: Convert 2D poses to 3D biomechanical models
  4. Metrics Calculation: Real-time speed, force, angle computations
  5. Quality Validation: Confidence scoring and error correction

AI Analysis Service

interface AIAnalysisService {
  generateInsights(context: AnalysisContext): Promise<AIResponse>;
  answerQuestion(question: string, context: FrameContext): Promise<string>;
  compareAthletes(athleteIds: string[]): Promise<ComparisonReport>;
}

AI Capabilities:

  • 🧠 Contextual Understanding: Interprets current frame, selected joints, metrics
  • πŸ“š Sports Science Knowledge: Trained on biomechanics literature and best practices
  • 🎯 Technique Analysis: Identifies optimal vs. suboptimal movement patterns
  • πŸ“Š Performance Comparison: Cross-athlete and cross-sport analysis
  • πŸ” Pose Understanding Verification: Validates AI comprehension before providing analysis
  • ⚑ Turbulance Integration: Optional probabilistic analysis with domain-specific scripting

2. Pose Understanding Verification System

Verification Pipeline

interface PoseVerificationService {
  verifyUnderstanding(poseData: PoseData, query: string): Promise<VerificationResult>;
  generatePoseDescription(poseData: PoseData): string;
  renderPoseSkeleton(poseData: PoseData): ImageData;
  calculateSimilarity(actual: ImageData, generated: ImageData): number;
}

Verification Process:

  1. 🎨 Skeleton Rendering: Convert pose data to visual skeleton representation
  2. πŸ“ Description Generation: Create natural language description of pose
  3. πŸ€– AI Image Generation: Use Stable Diffusion to generate pose image from description
  4. πŸ” Similarity Analysis: Compare generated image with actual pose using CLIP embeddings
  5. βœ… Validation Decision: Determine if AI understanding meets confidence threshold

Quality Assurance Features:

  • 🎯 Configurable Thresholds: Adjustable similarity requirements (default: 70%)
  • πŸ”„ Retry Logic: Automatic retry for failed verifications (max 2 attempts)
  • πŸ’Ύ Result Caching: Cache verification results to improve performance
  • πŸ› Debug Imaging: Save generated images for troubleshooting
  • πŸ“Š Performance Metrics: Track verification success rates and timing

3. Turbulance Probabilistic Engine

Advanced Scientific Computing

interface TurbulanceEngine {
  parseScript(script: string): Promise<TurbulanceAST>;
  executeAnalysis(ast: TurbulanceAST, data: AthleteData): Promise<ProbabilisticResult>;
  validateProposition(proposition: Proposition, evidence: Evidence): Promise<ValidationResult>;
  optimizeGoals(goals: Goal[], constraints: Constraint[]): Promise<OptimizationResult>;
}

Turbulance Capabilities:

  • πŸ”¬ Scientific Propositions: Hypothesis testing with quantified evidence support
  • πŸ“Š Uncertainty Propagation: Monte Carlo simulations and Bayesian inference
  • 🎯 Goal Optimization: Multi-objective optimization with biomechanical constraints
  • 🧠 Metacognitive Analysis: Self-monitoring and adaptive reasoning
  • πŸ“ˆ Evidence Integration: Multi-source data fusion with reliability weighting
  • πŸ”„ Iterative Refinement: Continuous improvement through feedback loops

Research Applications:

// Example: Injury risk prediction with uncertainty quantification
proposition InjuryRiskAssessment:
    context athlete_history = load_injury_database()
    context biomechanical_data = load_current_analysis()
    
    motion RiskFactorIdentification("Movement patterns correlate with injury probability")
    motion PreventionStrategies("Technique modifications reduce injury risk")
    
    within longitudinal_analysis:
        given stress_concentration > injury_threshold with_confidence(0.8):
            support RiskFactorIdentification with_weight(0.9)
            
            prediction_model: bayesian_network(
                risk_factors: [stress_concentration, load_history, technique_deviation],
                injury_probability: monte_carlo_simulation(samples: 10000),
                confidence_interval: 0.95
            )

4. Real-Time Synchronization Engine

Timeline Orchestration

class SyncEngine {
  syncVideoWithPoseData(videoTimestamp: number): PoseFrame;
  calculateFrameMetrics(poseData: PoseFrame): MotionMetrics;
  predictNextFrame(currentPose: PoseFrame): PoseFrame;
  handlePlaybackControls(action: PlaybackAction): void;
}

Synchronization Features:

  • ⏱️ Frame-Perfect Alignment: Video and 3D model synchronized to milliseconds
  • πŸ”„ Bidirectional Control: Video controls update 3D model and vice versa
  • πŸ“ˆ Predictive Loading: Preload upcoming pose data for smooth playback
  • πŸŽ›οΈ Playback Management: Play, pause, seek, speed control across all components

πŸ”„ Orchestration Layer

System Integration

Component Communication

// Central state management for synchronized playback
interface SystemState {
  currentFrame: number;
  selectedAthlete: AthleteData;
  activeJoints: string[];
  analysisMode: 'real-time' | 'comparative' | 'technique-focus';
  aiChatContext: ChatContext;
}

// Event-driven architecture
class OrchestrationEngine {
  onVideoTimeUpdate(timestamp: number): void;
  onJointSelection(jointName: string): void;
  onAIQuestionAsked(question: string, context: any): void;
  onMetricsCalculated(metrics: MotionMetrics): void;
}

Data Flow Architecture

Video Playback β†’ Frame Extract β†’ Pose Lookup β†’ 3D Update β†’ Metrics Calc β†’ AI Context β†’ User Interface
     ↑                                                                                        ↓
User Controls ← AI Responses ← Context Analysis ← Real-time Metrics ← Joint Selection ← Click Events

Performance Optimization

GPU Acceleration

  • 3D Rendering: WebGL-based mannequin visualization
  • Physics Simulation: GPU.js for biomechanical calculations
  • Video Processing: Hardware-accelerated decoding and frame extraction
  • AI Inference: GPU-optimized model serving for real-time responses

Caching Strategy

  • Pose Data: Frame-indexed caching for instant lookup
  • Video Segments: Strategic preloading based on user interaction patterns
  • AI Responses: Context-aware caching of similar questions
  • 3D Models: Efficient mesh caching and level-of-detail optimization

πŸ“Š Elite Athlete Dataset

Available Athletes & Sports

Athlete Sport Specialty Data Quality
Usain Bolt Sprint 100m World Record ⭐⭐⭐⭐⭐
Asafa Powell Sprint Former World Record ⭐⭐⭐⭐⭐
Didier Drogba Football Header Technique ⭐⭐⭐⭐⭐
Derek Chisora Boxing Power Punching ⭐⭐⭐⭐⭐
Jonah Lomu Rugby Power Running ⭐⭐⭐⭐⭐
Mahela Jayawardene Cricket Batting Technique ⭐⭐⭐⭐
Kevin Pietersen Cricket Shot Analysis ⭐⭐⭐⭐
Daniel Sturridge Football Dribbling Mechanics ⭐⭐⭐⭐
Gareth Bale Football Kicking Technique ⭐⭐⭐⭐
Jordan Henderson Football Passing Biomechanics ⭐⭐⭐⭐
Raheem Sterling Football Sprint Analysis ⭐⭐⭐⭐

Data Structure

Pose Detection Data

{
  "metadata": {
    "athlete": "usain_bolt_final",
    "sport": "sprint", 
    "fps": 30,
    "duration": 10.5,
    "resolution": "1920x1080"
  },
  "frames": {
    "0": {
      "pose_landmarks": [
        {"x": 0.5, "y": 0.3, "z": 0.1, "visibility": 0.99},
        // ... 33 total landmarks
      ],
      "timestamp": 0.0
    }
  }
}

Biomechanical Analysis

{
  "joint_angles": {
    "left_knee": 45.2,
    "right_knee": 43.8,
    "left_ankle": 12.5
  },
  "forces": {
    "ground_reaction": {"x": 120, "y": 890, "z": 45}
  },
  "stability_metrics": {
    "center_of_mass": {"x": 0.0, "y": 1.2, "z": 0.0},
    "balance_score": 0.92
  }
}

πŸš€ Getting Started

Prerequisites

Node.js 18+
npm or yarn
WebGL-compatible browser
Git LFS (for large video files)
Rust (optional, for Turbulance advanced analysis)

Quick Setup

# Clone the repository
git clone <repository-url>
cd biomechanical-analysis-platform

# Install dependencies
npm install

# Copy your athlete data
cp -r datasources/ space-computer/public/datasources/

# Start the development server
cd space-computer
npm run dev

# Build for production
npm run build

First Analysis

import { SimpleVideoAnalysis } from './src/remotion/SimpleVideoAnalysis';

// Render Usain Bolt sprint analysis
<SimpleVideoAnalysis 
  athleteId="usain_bolt_final"
  athleteName="Usain Bolt"
  sport="Sprint"
/>

πŸ“– API Documentation

Core APIs

BiomechanicalDataLoader

// Load athlete data
const athleteData = await dataLoader.loadAthleteData('usain_bolt_final');

// Get frame-synchronized pose
const currentPose = dataLoader.getFrameData('usain_bolt_final', frameNumber);

// Get biomechanical analysis  
const postureAnalysis = dataLoader.getPostureAnalysis('usain_bolt_final', frameNumber);

// Convert pose formats
const spaceComputerPose = dataLoader.convertPoseDataToSpaceComputer(jsonData);

VideoReference Component

interface VideoReferenceProps {
  videoUrl: string;
  athleteName?: string;
  sport?: string;
  position?: 'left' | 'right' | 'background' | 'picture-in-picture';
  size?: 'small' | 'medium' | 'large' | 'half-screen';
  opacity?: number;
  videoDuration?: number;
  style?: React.CSSProperties;
}

AI Chat Integration

interface ChatInterfaceProps {
  selectedJoint?: string;
  currentMetrics: MotionMetrics;
  currentPose?: PoseData;
  onAskAboutJoint: (joint: string, question: string) => void;
  aiEnabled?: boolean;
}

Pose Verification API

// Verify single pose understanding
POST /api/verification/verify-pose
{
  "pose_data": PoseData,
  "query": string,
  "similarity_threshold": 0.7,
  "save_images": false
}

// Batch verification
POST /api/verification/batch-verify
{
  "requests": PoseVerificationRequest[]
}

// System health check
GET /api/verification/health

// Test verification system
POST /api/verification/test-verification

Turbulance Scripting API

// Execute Turbulance script
POST /api/turbulance/execute
{
  "script": string,
  "athlete_data": AthleteData[],
  "config": TurbulanceConfig
}

// Validate proposition
POST /api/turbulance/validate-proposition
{
  "proposition": PropositionDefinition,
  "evidence": EvidenceCollection,
  "confidence_threshold": 0.75
}

// Optimize biomechanical goals
POST /api/turbulance/optimize-goals
{
  "goals": Goal[],
  "constraints": Constraint[],
  "athlete_profile": AthleteProfile
}

// Get analysis recommendations
GET /api/turbulance/recommendations/{athlete_id}
?confidence_min=0.8&include_uncertainty=true

Data Models

AthleteData Interface

interface AthleteData {
  id: string;
  name: string;
  sport: string;
  videoUrl: string;
  modelData: {
    poseData: PoseData;
    frameCount: number;
  };
  postureData: PostureData;
  metadata: {
    fps: number;
    duration: number;
    frameCount: number;
    resolution: { width: number; height: number };
  };
}

Verification Data Models

interface VerificationResult {
  understood: boolean;
  confidence: number;
  similarity_score: number;
  verification_time: number;
  error_message?: string;
  verification_id?: string;
}

interface PoseVerificationRequest {
  pose_data: Record<string, { x: number; y: number; confidence: number }>;
  query: string;
  similarity_threshold?: number;
  save_images?: boolean;
}

interface VerificationStats {
  total_verifications: number;
  success_rate: number;
  average_confidence: number;
  average_similarity: number;
  average_verification_time: number;
}

Turbulance Data Models

interface TurbulanceConfig {
  uncertainty_model: "bayesian_inference" | "monte_carlo" | "fuzzy_logic";
  confidence_threshold: number;
  verification_required: boolean;
  real_time_analysis: boolean;
  max_iterations: number;
  timeout_seconds: number;
}

interface PropositionDefinition {
  name: string;
  motions: Motion[];
  context: Record<string, any>;
  evidence_requirements: EvidenceRequirement[];
}

interface Motion {
  name: string;
  description: string;
  success_criteria: SuccessCriteria[];
  weight: number;
}

interface Goal {
  id: string;
  description: string;
  objectives: Objective[];
  success_threshold: number;
  constraints: Constraint[];
  personalization_factors: Record<string, any>;
}

interface ProbabilisticResult {
  success: boolean;
  propositions: Record<string, PropositionResult>;
  goals: Record<string, GoalResult>;
  recommendations: Recommendation[];
  uncertainty_metrics: UncertaintyMetrics;
  execution_time: number;
}

interface UncertaintyMetrics {
  overall_confidence: number;
  evidence_reliability: number;
  model_uncertainty: number;
  data_quality: number;
  prediction_variance: number;
  bias_indicators: string[];
}

πŸŽ›οΈ Configuration

Layout Customization

// Split-screen layout (recommended)
const splitScreenConfig = {
  videoPosition: 'left',
  videoSize: 'half-screen',
  analysisPanel: 'right',
  aiChat: 'overlay'
};

// Picture-in-picture layout
const pipConfig = {
  videoPosition: 'picture-in-picture', 
  videoSize: 'medium',
  analysisPanel: 'full-width',
  aiChat: 'sidebar'
};

// Background reference layout
const backgroundConfig = {
  videoPosition: 'background',
  videoSize: 'large',
  analysisPanel: 'overlay',
  aiChat: 'modal'
};

Performance Tuning

// GPU acceleration settings
const performanceConfig = {
  enableGPUPhysics: true,
  maxFrameRate: 60,
  videoCacheSize: '500MB',
  poseDataPreload: 120, // frames
  aiResponseCache: true
};

Pose Verification Configuration

// Verification system settings
const verificationConfig = {
  enabled: true,                    // Enable/disable verification
  similarity_threshold: 0.7,        // Minimum similarity for understanding
  max_retries: 2,                   // Maximum retry attempts
  cache_results: true,              // Cache verification results
  save_debug_images: false,         // Save images for debugging
  batch_size_limit: 10,             // Maximum batch verification size
  timeout_seconds: 30,              // Verification timeout
  image_generation_model: "runwayml/stable-diffusion-v1-5"
};

Turbulance Scripting Configuration

// Advanced probabilistic analysis settings
const turbulanceConfig = {
  enabled: false,                   // Enable for advanced research use
  uncertainty_model: "bayesian_inference",  // Analysis method
  confidence_threshold: 0.75,       // Minimum confidence for conclusions
  verification_required: true,      // Validate AI understanding
  real_time_analysis: false,        // Enable real-time probabilistic updates
  max_iterations: 10000,            // Maximum optimization iterations
  timeout_seconds: 300,             // Script execution timeout
  parallel_processing: true,        // Multi-threaded analysis
  save_intermediate_results: false, // Debug probabilistic computations
  monte_carlo_samples: 10000,       // Uncertainty propagation samples
  optimization_algorithm: "multi_objective_genetic",  // Goal optimization
  evidence_weighting: "reliability_based",  // How to combine evidence
};

πŸ§ͺ Usage Examples

Basic Video Analysis

function BasicAnalysis() {
  return (
    <SimpleVideoAnalysis 
      athleteId="usain_bolt_final"
      athleteName="Usain Bolt"
      sport="Sprint"
    />
  );
}

Analysis with Verification

function VerifiedAnalysis() {
  const [verificationResult, setVerificationResult] = useState(null);
  const [isVerifying, setIsVerifying] = useState(false);

  const handlePoseAnalysis = async (poseData, query) => {
    setIsVerifying(true);
    
    // Verify AI understanding before analysis
    const verification = await verifyPoseUnderstanding(poseData, query);
    setVerificationResult(verification);
    
    if (verification.understood) {
      // Proceed with high-confidence analysis
      const analysis = await performBiomechanicalAnalysis(poseData, query);
      return analysis;
    } else {
      // Handle failed verification
      console.warn('AI verification failed - results may be inaccurate');
    }
    
    setIsVerifying(false);
  };

  return (
    <div>
      <VerificationStatus
        isVerifying={isVerifying}
        verificationResult={verificationResult}
        onRetryVerification={() => handlePoseAnalysis(currentPose, lastQuery)}
        showDetails={true}
      />
      <SimpleVideoAnalysis 
        athleteId="usain_bolt_final"
        athleteName="Usain Bolt"
        sport="Sprint"
        onPoseAnalysis={handlePoseAnalysis}
      />
    </div>
  );
}

Multi-Athlete Comparison

function ComparisonAnalysis() {
  const athletes = ['usain_bolt_final', 'asafa_powell_race'];
  
  return (
    <div style={{ display: 'flex' }}>
      {athletes.map(athleteId => (
        <VideoAnalysisComposition
          key={athleteId}
          athleteId={athleteId}
          videoPosition="left"
          videoSize="medium"
        />
      ))}
    </div>
  );
}

Sport-Specific Analysis

function SportFocusedAnalysis() {
  return (
    <div>
      {/* Sprint Technique Analysis */}
      <VideoAnalysisComposition 
        athleteId="usain_bolt_final"
        videoPosition="background"
        videoSize="large"
      />
      
      {/* Boxing Power Analysis */}
      <VideoAnalysisComposition 
        athleteId="derek_chisora_punch"
        videoPosition="picture-in-picture"
        videoSize="small"
      />
    </div>
  );
}

Advanced Turbulance Analysis

function TurbulanceResearchAnalysis() {
  const [turbulanceResult, setTurbulanceResult] = useState(null);
  const [isAnalyzing, setIsAnalyzing] = useState(false);

  const runProbabilisticAnalysis = async () => {
    setIsAnalyzing(true);
    
    const turbulanceScript = `
      proposition EliteSprintOptimization:
        context athletes = ["usain_bolt_final", "asafa_powell_race"]
        
        motion StartEfficiency("Optimal block start mechanics")
        motion DrivePhaseOptimization("Maximum acceleration in first 30m")
        motion TopSpeedMaintenance("Velocity sustainability")
        
        within biomechanical_analysis:
          given block_angle in optimal_range(42Β°, 48Β°) with_confidence(0.85):
            support StartEfficiency with_weight(0.9)
            
          goal MaximizePerformance = Goal.new(
            description: "Optimize sprint performance with injury prevention",
            objectives: [
              maximize(sprint_velocity) with_weight(0.6),
              minimize(injury_risk) with_weight(0.4)
            ],
            success_threshold: 0.8
          )
    `;

    try {
      const result = await turbulanceAPI.executeScript(turbulanceScript);
      setTurbulanceResult(result);
    } catch (error) {
      console.error('Turbulance analysis failed:', error);
    }
    
    setIsAnalyzing(false);
  };

  return (
    <div>
      <SimpleVideoAnalysis 
        athleteId="usain_bolt_final"
        athleteName="Usain Bolt"
        sport="Sprint"
      />
      
      <button onClick={runProbabilisticAnalysis} disabled={isAnalyzing}>
        {isAnalyzing ? 'Running Probabilistic Analysis...' : 'Advanced Turbulance Analysis'}
      </button>
      
      {turbulanceResult && (
        <div className="turbulance-results">
          <h3>Scientific Analysis Results</h3>
          <p>Overall Confidence: {turbulanceResult.uncertainty_metrics.overall_confidence}</p>
          <ul>
            {turbulanceResult.recommendations.map(rec => (
              <li key={rec.id}>
                {rec.description} (Confidence: {rec.confidence})
              </li>
            ))}
          </ul>
        </div>
      )}
    </div>
  );
}

πŸ”§ Development

Project Structure

β”œβ”€β”€ space-computer/                 # Frontend Platform
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ components/
β”‚   β”‚   β”‚   β”œβ”€β”€ biomechanics/      # Core analysis components
β”‚   β”‚   β”‚   β”œβ”€β”€ ai/                # AI chat interface
β”‚   β”‚   β”‚   β”œβ”€β”€ verification/      # Pose understanding verification
β”‚   β”‚   β”‚   └── ui/                # UI components
β”‚   β”‚   β”œβ”€β”€ remotion/              # Video compositions
β”‚   β”‚   β”œβ”€β”€ utils/                 # Data processing utilities
β”‚   β”‚   └── hooks/                 # React hooks
β”‚   └── public/
β”‚       └── datasources/           # Athlete data
β”œβ”€β”€ backend/                       # Backend Services
β”‚   β”œβ”€β”€ core/
β”‚   β”‚   β”œβ”€β”€ pose_understanding.py  # Verification system
β”‚   β”‚   └── biomechanical_analysis.py
β”‚   β”œβ”€β”€ api/
β”‚   β”‚   β”œβ”€β”€ verification_endpoints.py # Verification API
β”‚   β”‚   └── athlete_endpoints.py
β”‚   β”œβ”€β”€ turbulance_parser/         # Turbulance scripting engine
β”‚   β”‚   β”œβ”€β”€ src/                   # Rust implementation
β”‚   β”‚   β”‚   β”œβ”€β”€ parser.rs          # Language parser
β”‚   β”‚   β”‚   β”œβ”€β”€ compiler.rs        # AST compiler
β”‚   β”‚   β”‚   └── executor.rs        # Probabilistic execution
β”‚   β”‚   └── Cargo.toml             # Rust dependencies
β”‚   └── ai/                        # AI models and processing
β”œβ”€β”€ datasources/                   # Original data files
β”‚   β”œβ”€β”€ models/                    # JSON pose data
β”‚   β”œβ”€β”€ annotated/                 # MP4 videos
β”‚   β”œβ”€β”€ posture/                   # Biomechanical analysis
β”‚   └── gifs/                      # Visualization outputs
β”œβ”€β”€ scripts/
β”‚   └── test_pose_verification.py  # Verification testing
└── assets/                        # Platform assets
    └── img/                       # Images and logos

Contributing Guidelines

  1. Code Style: Follow TypeScript best practices with ESLint/Prettier
  2. Component Design: Use functional components with hooks
  3. Data Processing: Maintain type safety with proper interfaces
  4. Performance: Optimize for 60fps rendering and real-time analysis
  5. Documentation: Add JSDoc comments for all public APIs

Testing Strategy

# Unit tests for data processing
npm run test:unit

# Integration tests for video sync
npm run test:integration  

# End-to-end analysis workflow
npm run test:e2e

# Performance benchmarks
npm run test:performance

# Test pose understanding verification
python scripts/test_pose_verification.py

# Test Turbulance scripting engine (optional)
cd backend/turbulance_parser
cargo test

# Test Turbulance integration
python scripts/test_turbulance_integration.py

🀝 Contributing

We welcome contributions to enhance the biomechanical analysis platform!

Areas for Enhancement

  • 🎯 New Sports: Add additional athletic disciplines and athletes
  • πŸ€– AI Improvements: Enhance contextual understanding and analysis depth
  • πŸ“Š Metrics Expansion: Develop new biomechanical measurement algorithms
  • 🎨 UI/UX: Improve visualization and interaction design
  • ⚑ Performance: Optimize rendering and data processing pipelines
  • πŸ” Verification Enhancement: Improve pose understanding validation accuracy and speed
  • 🎨 Image Generation: Enhance AI-generated pose visualizations for better verification
  • ⚑ Turbulance Language: Expand probabilistic programming constructs and domain-specific functions
  • πŸ”¬ Research Integration: Develop specialized Turbulance modules for specific sports science domains

Contribution Process

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Add comprehensive tests for new functionality
  4. Ensure all existing tests pass
  5. Submit a pull request with detailed description

πŸ“œ License

This project is licensed under the MIT License - see the LICENSE file for details.


πŸ™ Acknowledgments

  • Elite Athletes: Thanks to the world-class athletes whose performance data makes this analysis possible
  • Sports Science Community: Built on decades of biomechanical research and best practices
  • Open Source Libraries: Powered by React, Remotion, Three.js, and the broader JavaScript ecosystem
  • AI Research: Leveraging advances in computer vision, pose detection, and natural language processing

Transform Athletic Performance Through Intelligent Biomechanical Analysis

Built with ❀️ for sports science, powered by AI

πŸš€ Get Started β€’ πŸ“– Documentation β€’ ⚑ Turbulance Scripting β€’ 🀝 Contribute

About

This platform combines real-world athlete video analysis with 3D biomechanical modeling and conversational AI to create an unprecedented sports science exploration experience.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published