
AI-Powered 3D Biomechanical Analysis with Video Integration
Transform elite athlete movement data into interactive, intelligent analysis experiences
This platform combines real-world athlete video analysis with 3D biomechanical modeling and conversational AI to create an unprecedented sports science exploration experience. Featuring world-class athletes including Usain Bolt, Didier Drogba, Derek Chisora, and more across multiple sports disciplines.
- πΉ Video Integration: Synchronized playback of annotated athlete videos with 3D pose models
- π€ AI-Powered Analysis: Click anywhere to ask intelligent questions about movement biomechanics
- π― Real-Time Insights: Live metrics, joint analysis, and technique recommendations
- πββοΈ Elite Athlete Data: World-record holders and professional athletes across 6+ sports
- π Pose Understanding Verification: AI validates its comprehension through image generation before analysis
- β‘ Turbulance Scripting: Optional advanced probabilistic analysis using domain-specific language for complex biomechanical research
graph TB
subgraph "Frontend Layer"
A[Space Computer Platform]
A1[Video Reference Component]
A2[3D Model Visualization]
A3[AI Chat Interface]
A4[Real-time Metrics]
A5[Verification Status Display]
end
subgraph "Data Layer"
B[Biomechanical Data]
B1[Pose Detection Models]
B2[Video Annotations]
B3[Posture Analysis]
B4[Elite Athlete Dataset]
end
subgraph "Backend Services"
C[AI Orchestration]
C1[Pose Processing API]
C2[Video Analysis Service]
C3[Context-Aware AI]
C4[Real-time Sync Engine]
C5[Pose Understanding Verifier]
C6[Turbulance Engine]
end
subgraph "Infrastructure"
D[Data Processing]
D1[GPU Acceleration]
D2[Physics Simulation]
D3[Timeline Synchronization]
D4[Multi-Sport Classification]
D5[Image Generation & Similarity]
D6[Probabilistic Analysis]
end
A --> B
B --> C
C --> D
A1 --> A2
A2 --> A3
A5 --> A3
B1 --> C1
B2 --> C2
B3 --> C3
B4 --> C4
C5 --> D5
<VideoReference
videoUrl="/datasources/annotated/usain_bolt_final.mp4"
athleteName="Usain Bolt"
sport="Sprint"
position="left" // Flexible layout positioning
size="half-screen" // Responsive sizing
videoDuration={10.5}
/>
Features:
- β Synchronized Playback: Perfect frame alignment with 3D models
- β Multi-Layout Support: Split-screen, picture-in-picture, background modes
- β Athlete Metadata: Real-time display of athlete info and progress
- β Remotion Integration: Native timeline synchronization
<MannequinViewer
modelUrl="/models/elite-athlete.glb"
pose={currentFramePose}
highlightedJoints={['left_knee', 'right_knee']}
onJointSelect={handleJointAnalysis}
/>
Capabilities:
- π― Real-time Pose Rendering: GPU-accelerated 3D joint positioning
- π΄ Interactive Joint Selection: Click any body part for detailed analysis
- β‘ Physics Simulation: Realistic biomechanical constraints and forces
- π¨ Visual Highlighting: Dynamic joint emphasis and annotation
<ChatInterface
selectedJoint="left_knee"
currentMetrics={liveMetrics}
onAskAboutJoint={(joint, question) => {
// Context-aware biomechanical analysis
}}
/>
Intelligence Features:
- π§ Context Awareness: Understands current video frame and 3D pose
- π¬ Natural Language: Ask questions in plain English about any movement
- π Data Integration: AI has access to all biomechanical metrics and pose data
- π― Sport-Specific Knowledge: Tailored insights for each athletic discipline
<VerificationStatus
isVerifying={isVerifying}
verificationResult={verificationResult}
onRetryVerification={handleRetry}
showDetails={true}
/>
Verification Features:
- π AI Comprehension Validation: Ensures AI truly understands pose data before analysis
- π¨ Image Generation Testing: AI generates visual representation of poses for comparison
- π Similarity Scoring: CLIP-based comparison between actual and generated pose images
- β‘ Real-time Feedback: Instant verification status with confidence metrics
- π Retry Mechanism: Automatic retry for failed verifications
- π Transparency: Users see verification confidence and similarity scores
<VerificationStatus
isVerifying={isVerifying}
verificationResult={verificationResult}
onRetryVerification={handleRetry}
showDetails={true}
/>
Verification Features:
- π AI Comprehension Validation: Ensures AI truly understands pose data before analysis
- π¨ Image Generation Testing: AI generates visual representation of poses for comparison
- π Similarity Scoring: CLIP-based comparison between actual and generated pose images
- β‘ Real-time Feedback: Instant verification status with confidence metrics
- π Retry Mechanism: Automatic retry for failed verifications
- π Transparency: Users see verification confidence and similarity scores
- Speed & Acceleration: Live calculation from pose changes
- Stride Analysis: Length, rate, ground contact timing
- Vertical Oscillation: Efficiency measurements
- Symmetry Scoring: Left-right movement balance
- Joint Load Analysis: Forces and moments at each joint
- Movement Patterns: Coordination and efficiency scoring
- Technique Recommendations: AI-powered improvement suggestions
- Comparative Analysis: Performance vs. optimal biomechanics
For researchers and advanced users requiring sophisticated biomechanical analysis, Space Computer optionally integrates with Turbulance - a domain-specific programming language designed for probabilistic scientific reasoning and evidence-based analysis.
Turbulance is a specialized programming language that combines:
- Probabilistic Programming: Native uncertainty handling and propagation
- Evidence-Based Reasoning: Scientific hypothesis testing with quantified confidence
- Cross-Domain Analysis: Pattern recognition across multiple sports disciplines
- Metacognitive Analysis: Self-monitoring and adaptive reasoning systems
π§ͺ Scientific Propositions
proposition EliteAthleteOptimization:
motion TechniqueEfficiency("Optimal biomechanics maximize performance output")
motion InjuryPrevention("Elite techniques minimize long-term injury risk")
within synchronized_multimodal_data:
given power_transfer_efficiency() > 0.85 with_confidence(0.8):
support TechniqueEfficiency with_weight(0.9)
π Uncertainty Quantification
// Native uncertainty support
item measurement = 9.81 Β± 0.02 // Gaussian uncertainty
item confidence_interval = [9.79, 9.83] with_confidence(0.95)
// Uncertainty propagation
item calculated_result = complex_calculation(measurement)
uncertainty_propagation: monte_carlo(samples: 10000)
π― Goal-Oriented Analysis
goal PerformanceOptimization = Goal.new(
description: "Maximize athletic performance while minimizing injury risk",
objectives: [
maximize(power_output) with_weight(0.4),
minimize(injury_risk) with_weight(0.6)
],
success_threshold: 0.85
)
π¬ Evidence Integration
evidence BiomechanicalData:
sources:
- type: "motion_capture", reliability: 0.95
- type: "force_plates", reliability: 0.98
processing:
- name: "noise_reduction", operation: "butterworth_filter"
- name: "gap_filling", operation: "cubic_spline"
- High Performance: Native Rust implementation for real-time analysis
- Memory Safe: Zero-cost abstractions with guaranteed memory safety
- Concurrent Processing: Multi-threaded analysis of complex biomechanical models
- WebAssembly Ready: Browser-compatible execution for client-side analysis
// Frontend Turbulance integration
interface TurbulanceAPI {
executeScript(script: string): Promise<TurbulanceResult>;
analyzeAthleteData(athleteId: string, script: string): Promise<BiomechanicalAnalysis>;
validateProposition(proposition: string, evidence: EvidenceData): Promise<ValidationResult>;
}
- Multi-Sport Comparison: Cross-disciplinary biomechanical pattern analysis
- Injury Prediction: Long-term injury risk modeling with confidence intervals
- Performance Optimization: Evidence-based technique recommendations
- Research Publication: Generate scientific-quality analysis reports
β Recommended For:
- Research institutions requiring rigorous scientific analysis
- Elite athlete training programs needing performance optimization
- Sports science laboratories conducting multi-athlete studies
- Advanced users comfortable with programming concepts
- General fitness analysis and basic biomechanical insights
- Casual athlete performance tracking
- Simple video analysis without statistical rigor
// Comprehensive sprint biomechanics analysis
proposition SprintOptimization:
context athletes = ["usain_bolt_final", "asafa_powell_race"]
motion OptimalStartMechanics("Block start maximizes initial acceleration")
motion DrivePhaseEfficiency("First 30m optimizes power application")
within sprint_phase_segmentation:
segment start_phase = extract_phase(0, 2):
given block_angle in optimal_range(42Β°, 48Β°) with_confidence(0.85):
support OptimalStartMechanics with_weight(0.9)
predicted_improvement: calculate_optimization_potential(
current_angles: get_athlete_angles(),
optimal_ranges: [[42Β°, 48Β°]],
athlete_anthropometrics: get_athlete_dimensions()
)
interface PoseDetectionAPI {
processVideo(videoFile: File): Promise<PoseData[]>;
extractKeyframes(timestamps: number[]): Promise<KeyframeData>;
analyzeBiomechanics(poses: PoseData[]): Promise<BiomechanicalMetrics>;
}
Processing Chain:
- Video Ingestion: Accept MP4/MOV athlete footage
- Pose Extraction: MediaPipe/OpenPose landmark detection
- 3D Reconstruction: Convert 2D poses to 3D biomechanical models
- Metrics Calculation: Real-time speed, force, angle computations
- Quality Validation: Confidence scoring and error correction
interface AIAnalysisService {
generateInsights(context: AnalysisContext): Promise<AIResponse>;
answerQuestion(question: string, context: FrameContext): Promise<string>;
compareAthletes(athleteIds: string[]): Promise<ComparisonReport>;
}
AI Capabilities:
- π§ Contextual Understanding: Interprets current frame, selected joints, metrics
- π Sports Science Knowledge: Trained on biomechanics literature and best practices
- π― Technique Analysis: Identifies optimal vs. suboptimal movement patterns
- π Performance Comparison: Cross-athlete and cross-sport analysis
- π Pose Understanding Verification: Validates AI comprehension before providing analysis
- β‘ Turbulance Integration: Optional probabilistic analysis with domain-specific scripting
interface PoseVerificationService {
verifyUnderstanding(poseData: PoseData, query: string): Promise<VerificationResult>;
generatePoseDescription(poseData: PoseData): string;
renderPoseSkeleton(poseData: PoseData): ImageData;
calculateSimilarity(actual: ImageData, generated: ImageData): number;
}
Verification Process:
- π¨ Skeleton Rendering: Convert pose data to visual skeleton representation
- π Description Generation: Create natural language description of pose
- π€ AI Image Generation: Use Stable Diffusion to generate pose image from description
- π Similarity Analysis: Compare generated image with actual pose using CLIP embeddings
- β Validation Decision: Determine if AI understanding meets confidence threshold
Quality Assurance Features:
- π― Configurable Thresholds: Adjustable similarity requirements (default: 70%)
- π Retry Logic: Automatic retry for failed verifications (max 2 attempts)
- πΎ Result Caching: Cache verification results to improve performance
- π Debug Imaging: Save generated images for troubleshooting
- π Performance Metrics: Track verification success rates and timing
interface TurbulanceEngine {
parseScript(script: string): Promise<TurbulanceAST>;
executeAnalysis(ast: TurbulanceAST, data: AthleteData): Promise<ProbabilisticResult>;
validateProposition(proposition: Proposition, evidence: Evidence): Promise<ValidationResult>;
optimizeGoals(goals: Goal[], constraints: Constraint[]): Promise<OptimizationResult>;
}
Turbulance Capabilities:
- π¬ Scientific Propositions: Hypothesis testing with quantified evidence support
- π Uncertainty Propagation: Monte Carlo simulations and Bayesian inference
- π― Goal Optimization: Multi-objective optimization with biomechanical constraints
- π§ Metacognitive Analysis: Self-monitoring and adaptive reasoning
- π Evidence Integration: Multi-source data fusion with reliability weighting
- π Iterative Refinement: Continuous improvement through feedback loops
Research Applications:
// Example: Injury risk prediction with uncertainty quantification
proposition InjuryRiskAssessment:
context athlete_history = load_injury_database()
context biomechanical_data = load_current_analysis()
motion RiskFactorIdentification("Movement patterns correlate with injury probability")
motion PreventionStrategies("Technique modifications reduce injury risk")
within longitudinal_analysis:
given stress_concentration > injury_threshold with_confidence(0.8):
support RiskFactorIdentification with_weight(0.9)
prediction_model: bayesian_network(
risk_factors: [stress_concentration, load_history, technique_deviation],
injury_probability: monte_carlo_simulation(samples: 10000),
confidence_interval: 0.95
)
class SyncEngine {
syncVideoWithPoseData(videoTimestamp: number): PoseFrame;
calculateFrameMetrics(poseData: PoseFrame): MotionMetrics;
predictNextFrame(currentPose: PoseFrame): PoseFrame;
handlePlaybackControls(action: PlaybackAction): void;
}
Synchronization Features:
- β±οΈ Frame-Perfect Alignment: Video and 3D model synchronized to milliseconds
- π Bidirectional Control: Video controls update 3D model and vice versa
- π Predictive Loading: Preload upcoming pose data for smooth playback
- ποΈ Playback Management: Play, pause, seek, speed control across all components
// Central state management for synchronized playback
interface SystemState {
currentFrame: number;
selectedAthlete: AthleteData;
activeJoints: string[];
analysisMode: 'real-time' | 'comparative' | 'technique-focus';
aiChatContext: ChatContext;
}
// Event-driven architecture
class OrchestrationEngine {
onVideoTimeUpdate(timestamp: number): void;
onJointSelection(jointName: string): void;
onAIQuestionAsked(question: string, context: any): void;
onMetricsCalculated(metrics: MotionMetrics): void;
}
Video Playback β Frame Extract β Pose Lookup β 3D Update β Metrics Calc β AI Context β User Interface
β β
User Controls β AI Responses β Context Analysis β Real-time Metrics β Joint Selection β Click Events
- 3D Rendering: WebGL-based mannequin visualization
- Physics Simulation: GPU.js for biomechanical calculations
- Video Processing: Hardware-accelerated decoding and frame extraction
- AI Inference: GPU-optimized model serving for real-time responses
- Pose Data: Frame-indexed caching for instant lookup
- Video Segments: Strategic preloading based on user interaction patterns
- AI Responses: Context-aware caching of similar questions
- 3D Models: Efficient mesh caching and level-of-detail optimization
Athlete | Sport | Specialty | Data Quality |
---|---|---|---|
Usain Bolt | Sprint | 100m World Record | βββββ |
Asafa Powell | Sprint | Former World Record | βββββ |
Didier Drogba | Football | Header Technique | βββββ |
Derek Chisora | Boxing | Power Punching | βββββ |
Jonah Lomu | Rugby | Power Running | βββββ |
Mahela Jayawardene | Cricket | Batting Technique | ββββ |
Kevin Pietersen | Cricket | Shot Analysis | ββββ |
Daniel Sturridge | Football | Dribbling Mechanics | ββββ |
Gareth Bale | Football | Kicking Technique | ββββ |
Jordan Henderson | Football | Passing Biomechanics | ββββ |
Raheem Sterling | Football | Sprint Analysis | ββββ |
{
"metadata": {
"athlete": "usain_bolt_final",
"sport": "sprint",
"fps": 30,
"duration": 10.5,
"resolution": "1920x1080"
},
"frames": {
"0": {
"pose_landmarks": [
{"x": 0.5, "y": 0.3, "z": 0.1, "visibility": 0.99},
// ... 33 total landmarks
],
"timestamp": 0.0
}
}
}
{
"joint_angles": {
"left_knee": 45.2,
"right_knee": 43.8,
"left_ankle": 12.5
},
"forces": {
"ground_reaction": {"x": 120, "y": 890, "z": 45}
},
"stability_metrics": {
"center_of_mass": {"x": 0.0, "y": 1.2, "z": 0.0},
"balance_score": 0.92
}
}
Node.js 18+
npm or yarn
WebGL-compatible browser
Git LFS (for large video files)
Rust (optional, for Turbulance advanced analysis)
# Clone the repository
git clone <repository-url>
cd biomechanical-analysis-platform
# Install dependencies
npm install
# Copy your athlete data
cp -r datasources/ space-computer/public/datasources/
# Start the development server
cd space-computer
npm run dev
# Build for production
npm run build
import { SimpleVideoAnalysis } from './src/remotion/SimpleVideoAnalysis';
// Render Usain Bolt sprint analysis
<SimpleVideoAnalysis
athleteId="usain_bolt_final"
athleteName="Usain Bolt"
sport="Sprint"
/>
// Load athlete data
const athleteData = await dataLoader.loadAthleteData('usain_bolt_final');
// Get frame-synchronized pose
const currentPose = dataLoader.getFrameData('usain_bolt_final', frameNumber);
// Get biomechanical analysis
const postureAnalysis = dataLoader.getPostureAnalysis('usain_bolt_final', frameNumber);
// Convert pose formats
const spaceComputerPose = dataLoader.convertPoseDataToSpaceComputer(jsonData);
interface VideoReferenceProps {
videoUrl: string;
athleteName?: string;
sport?: string;
position?: 'left' | 'right' | 'background' | 'picture-in-picture';
size?: 'small' | 'medium' | 'large' | 'half-screen';
opacity?: number;
videoDuration?: number;
style?: React.CSSProperties;
}
interface ChatInterfaceProps {
selectedJoint?: string;
currentMetrics: MotionMetrics;
currentPose?: PoseData;
onAskAboutJoint: (joint: string, question: string) => void;
aiEnabled?: boolean;
}
// Verify single pose understanding
POST /api/verification/verify-pose
{
"pose_data": PoseData,
"query": string,
"similarity_threshold": 0.7,
"save_images": false
}
// Batch verification
POST /api/verification/batch-verify
{
"requests": PoseVerificationRequest[]
}
// System health check
GET /api/verification/health
// Test verification system
POST /api/verification/test-verification
// Execute Turbulance script
POST /api/turbulance/execute
{
"script": string,
"athlete_data": AthleteData[],
"config": TurbulanceConfig
}
// Validate proposition
POST /api/turbulance/validate-proposition
{
"proposition": PropositionDefinition,
"evidence": EvidenceCollection,
"confidence_threshold": 0.75
}
// Optimize biomechanical goals
POST /api/turbulance/optimize-goals
{
"goals": Goal[],
"constraints": Constraint[],
"athlete_profile": AthleteProfile
}
// Get analysis recommendations
GET /api/turbulance/recommendations/{athlete_id}
?confidence_min=0.8&include_uncertainty=true
interface AthleteData {
id: string;
name: string;
sport: string;
videoUrl: string;
modelData: {
poseData: PoseData;
frameCount: number;
};
postureData: PostureData;
metadata: {
fps: number;
duration: number;
frameCount: number;
resolution: { width: number; height: number };
};
}
interface VerificationResult {
understood: boolean;
confidence: number;
similarity_score: number;
verification_time: number;
error_message?: string;
verification_id?: string;
}
interface PoseVerificationRequest {
pose_data: Record<string, { x: number; y: number; confidence: number }>;
query: string;
similarity_threshold?: number;
save_images?: boolean;
}
interface VerificationStats {
total_verifications: number;
success_rate: number;
average_confidence: number;
average_similarity: number;
average_verification_time: number;
}
interface TurbulanceConfig {
uncertainty_model: "bayesian_inference" | "monte_carlo" | "fuzzy_logic";
confidence_threshold: number;
verification_required: boolean;
real_time_analysis: boolean;
max_iterations: number;
timeout_seconds: number;
}
interface PropositionDefinition {
name: string;
motions: Motion[];
context: Record<string, any>;
evidence_requirements: EvidenceRequirement[];
}
interface Motion {
name: string;
description: string;
success_criteria: SuccessCriteria[];
weight: number;
}
interface Goal {
id: string;
description: string;
objectives: Objective[];
success_threshold: number;
constraints: Constraint[];
personalization_factors: Record<string, any>;
}
interface ProbabilisticResult {
success: boolean;
propositions: Record<string, PropositionResult>;
goals: Record<string, GoalResult>;
recommendations: Recommendation[];
uncertainty_metrics: UncertaintyMetrics;
execution_time: number;
}
interface UncertaintyMetrics {
overall_confidence: number;
evidence_reliability: number;
model_uncertainty: number;
data_quality: number;
prediction_variance: number;
bias_indicators: string[];
}
// Split-screen layout (recommended)
const splitScreenConfig = {
videoPosition: 'left',
videoSize: 'half-screen',
analysisPanel: 'right',
aiChat: 'overlay'
};
// Picture-in-picture layout
const pipConfig = {
videoPosition: 'picture-in-picture',
videoSize: 'medium',
analysisPanel: 'full-width',
aiChat: 'sidebar'
};
// Background reference layout
const backgroundConfig = {
videoPosition: 'background',
videoSize: 'large',
analysisPanel: 'overlay',
aiChat: 'modal'
};
// GPU acceleration settings
const performanceConfig = {
enableGPUPhysics: true,
maxFrameRate: 60,
videoCacheSize: '500MB',
poseDataPreload: 120, // frames
aiResponseCache: true
};
// Verification system settings
const verificationConfig = {
enabled: true, // Enable/disable verification
similarity_threshold: 0.7, // Minimum similarity for understanding
max_retries: 2, // Maximum retry attempts
cache_results: true, // Cache verification results
save_debug_images: false, // Save images for debugging
batch_size_limit: 10, // Maximum batch verification size
timeout_seconds: 30, // Verification timeout
image_generation_model: "runwayml/stable-diffusion-v1-5"
};
// Advanced probabilistic analysis settings
const turbulanceConfig = {
enabled: false, // Enable for advanced research use
uncertainty_model: "bayesian_inference", // Analysis method
confidence_threshold: 0.75, // Minimum confidence for conclusions
verification_required: true, // Validate AI understanding
real_time_analysis: false, // Enable real-time probabilistic updates
max_iterations: 10000, // Maximum optimization iterations
timeout_seconds: 300, // Script execution timeout
parallel_processing: true, // Multi-threaded analysis
save_intermediate_results: false, // Debug probabilistic computations
monte_carlo_samples: 10000, // Uncertainty propagation samples
optimization_algorithm: "multi_objective_genetic", // Goal optimization
evidence_weighting: "reliability_based", // How to combine evidence
};
function BasicAnalysis() {
return (
<SimpleVideoAnalysis
athleteId="usain_bolt_final"
athleteName="Usain Bolt"
sport="Sprint"
/>
);
}
function VerifiedAnalysis() {
const [verificationResult, setVerificationResult] = useState(null);
const [isVerifying, setIsVerifying] = useState(false);
const handlePoseAnalysis = async (poseData, query) => {
setIsVerifying(true);
// Verify AI understanding before analysis
const verification = await verifyPoseUnderstanding(poseData, query);
setVerificationResult(verification);
if (verification.understood) {
// Proceed with high-confidence analysis
const analysis = await performBiomechanicalAnalysis(poseData, query);
return analysis;
} else {
// Handle failed verification
console.warn('AI verification failed - results may be inaccurate');
}
setIsVerifying(false);
};
return (
<div>
<VerificationStatus
isVerifying={isVerifying}
verificationResult={verificationResult}
onRetryVerification={() => handlePoseAnalysis(currentPose, lastQuery)}
showDetails={true}
/>
<SimpleVideoAnalysis
athleteId="usain_bolt_final"
athleteName="Usain Bolt"
sport="Sprint"
onPoseAnalysis={handlePoseAnalysis}
/>
</div>
);
}
function ComparisonAnalysis() {
const athletes = ['usain_bolt_final', 'asafa_powell_race'];
return (
<div style={{ display: 'flex' }}>
{athletes.map(athleteId => (
<VideoAnalysisComposition
key={athleteId}
athleteId={athleteId}
videoPosition="left"
videoSize="medium"
/>
))}
</div>
);
}
function SportFocusedAnalysis() {
return (
<div>
{/* Sprint Technique Analysis */}
<VideoAnalysisComposition
athleteId="usain_bolt_final"
videoPosition="background"
videoSize="large"
/>
{/* Boxing Power Analysis */}
<VideoAnalysisComposition
athleteId="derek_chisora_punch"
videoPosition="picture-in-picture"
videoSize="small"
/>
</div>
);
}
function TurbulanceResearchAnalysis() {
const [turbulanceResult, setTurbulanceResult] = useState(null);
const [isAnalyzing, setIsAnalyzing] = useState(false);
const runProbabilisticAnalysis = async () => {
setIsAnalyzing(true);
const turbulanceScript = `
proposition EliteSprintOptimization:
context athletes = ["usain_bolt_final", "asafa_powell_race"]
motion StartEfficiency("Optimal block start mechanics")
motion DrivePhaseOptimization("Maximum acceleration in first 30m")
motion TopSpeedMaintenance("Velocity sustainability")
within biomechanical_analysis:
given block_angle in optimal_range(42Β°, 48Β°) with_confidence(0.85):
support StartEfficiency with_weight(0.9)
goal MaximizePerformance = Goal.new(
description: "Optimize sprint performance with injury prevention",
objectives: [
maximize(sprint_velocity) with_weight(0.6),
minimize(injury_risk) with_weight(0.4)
],
success_threshold: 0.8
)
`;
try {
const result = await turbulanceAPI.executeScript(turbulanceScript);
setTurbulanceResult(result);
} catch (error) {
console.error('Turbulance analysis failed:', error);
}
setIsAnalyzing(false);
};
return (
<div>
<SimpleVideoAnalysis
athleteId="usain_bolt_final"
athleteName="Usain Bolt"
sport="Sprint"
/>
<button onClick={runProbabilisticAnalysis} disabled={isAnalyzing}>
{isAnalyzing ? 'Running Probabilistic Analysis...' : 'Advanced Turbulance Analysis'}
</button>
{turbulanceResult && (
<div className="turbulance-results">
<h3>Scientific Analysis Results</h3>
<p>Overall Confidence: {turbulanceResult.uncertainty_metrics.overall_confidence}</p>
<ul>
{turbulanceResult.recommendations.map(rec => (
<li key={rec.id}>
{rec.description} (Confidence: {rec.confidence})
</li>
))}
</ul>
</div>
)}
</div>
);
}
βββ space-computer/ # Frontend Platform
β βββ src/
β β βββ components/
β β β βββ biomechanics/ # Core analysis components
β β β βββ ai/ # AI chat interface
β β β βββ verification/ # Pose understanding verification
β β β βββ ui/ # UI components
β β βββ remotion/ # Video compositions
β β βββ utils/ # Data processing utilities
β β βββ hooks/ # React hooks
β βββ public/
β βββ datasources/ # Athlete data
βββ backend/ # Backend Services
β βββ core/
β β βββ pose_understanding.py # Verification system
β β βββ biomechanical_analysis.py
β βββ api/
β β βββ verification_endpoints.py # Verification API
β β βββ athlete_endpoints.py
β βββ turbulance_parser/ # Turbulance scripting engine
β β βββ src/ # Rust implementation
β β β βββ parser.rs # Language parser
β β β βββ compiler.rs # AST compiler
β β β βββ executor.rs # Probabilistic execution
β β βββ Cargo.toml # Rust dependencies
β βββ ai/ # AI models and processing
βββ datasources/ # Original data files
β βββ models/ # JSON pose data
β βββ annotated/ # MP4 videos
β βββ posture/ # Biomechanical analysis
β βββ gifs/ # Visualization outputs
βββ scripts/
β βββ test_pose_verification.py # Verification testing
βββ assets/ # Platform assets
βββ img/ # Images and logos
- Code Style: Follow TypeScript best practices with ESLint/Prettier
- Component Design: Use functional components with hooks
- Data Processing: Maintain type safety with proper interfaces
- Performance: Optimize for 60fps rendering and real-time analysis
- Documentation: Add JSDoc comments for all public APIs
# Unit tests for data processing
npm run test:unit
# Integration tests for video sync
npm run test:integration
# End-to-end analysis workflow
npm run test:e2e
# Performance benchmarks
npm run test:performance
# Test pose understanding verification
python scripts/test_pose_verification.py
# Test Turbulance scripting engine (optional)
cd backend/turbulance_parser
cargo test
# Test Turbulance integration
python scripts/test_turbulance_integration.py
We welcome contributions to enhance the biomechanical analysis platform!
- π― New Sports: Add additional athletic disciplines and athletes
- π€ AI Improvements: Enhance contextual understanding and analysis depth
- π Metrics Expansion: Develop new biomechanical measurement algorithms
- π¨ UI/UX: Improve visualization and interaction design
- β‘ Performance: Optimize rendering and data processing pipelines
- π Verification Enhancement: Improve pose understanding validation accuracy and speed
- π¨ Image Generation: Enhance AI-generated pose visualizations for better verification
- β‘ Turbulance Language: Expand probabilistic programming constructs and domain-specific functions
- π¬ Research Integration: Develop specialized Turbulance modules for specific sports science domains
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Add comprehensive tests for new functionality
- Ensure all existing tests pass
- Submit a pull request with detailed description
This project is licensed under the MIT License - see the LICENSE file for details.
- Elite Athletes: Thanks to the world-class athletes whose performance data makes this analysis possible
- Sports Science Community: Built on decades of biomechanical research and best practices
- Open Source Libraries: Powered by React, Remotion, Three.js, and the broader JavaScript ecosystem
- AI Research: Leveraging advances in computer vision, pose detection, and natural language processing
Transform Athletic Performance Through Intelligent Biomechanical Analysis
Built with β€οΈ for sports science, powered by AI
π Get Started β’ π Documentation β’ β‘ Turbulance Scripting β’ π€ Contribute