Skip to content

Updated the links for files numbered 3, 22, 28, 32, 39, 52, 53, 54, 55, 60, 61 #157

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 21 additions & 30 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
# Deep Learning Papers Reading Roadmap

>If you are a newcomer to the Deep Learning area, the first question you may have is "Which paper should I start reading from?"
> If you are a newcomer to the Deep Learning area, the first question you may have is "Which paper should I start reading from?"

>Here is a reading roadmap of Deep Learning papers!
> Here is a reading roadmap of Deep Learning papers!

The roadmap is constructed in accordance with the following four guidelines:

Expand All @@ -15,8 +15,7 @@ You will find many papers that are quite new but really worth reading.

I would continue adding papers to this roadmap.


---------------------------------------
---

# 1 Deep Learning History and Basics

Expand All @@ -30,9 +29,9 @@ I would continue adding papers to this roadmap.

## 1.2 Deep Belief Network(DBN)(Milestone of Deep Learning Eve)

**[2]** Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "**A fast learning algorithm for deep belief nets**." Neural computation 18.7 (2006): 1527-1554. [[pdf]](http://www.cs.toronto.edu/~hinton/absps/ncfast.pdf)**(Deep Learning Eve)** :star::star::star:
**[2]** Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "**A fast learning algorithm for deep belief nets**." Neural computation 18.7 (2006): 1527-1554. [[pdf]](http://www.cs.toronto.edu/~hinton/absps/ncfast.pdf)**(Deep Learning Eve)\*\* :star::star::star:

**[3]** Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "**Reducing the dimensionality of data with neural networks**." Science 313.5786 (2006): 504-507. [[pdf]](http://www.cs.toronto.edu/~hinton/science.pdf) **(Milestone, Show the promise of deep learning)** :star::star::star:
**[3]** Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "**Reducing the dimensionality of data with neural networks**." Science 313.5786 (2006): 504-507. [[pdf]](https://www.cs.toronto.edu/~hinton/absps/science.pdf) **(Milestone, Show the promise of deep learning)** :star::star::star:

## 1.3 ImageNet Evolution(Deep Learning broke out from here)

Expand All @@ -58,7 +57,7 @@ I would continue adding papers to this roadmap.

**[13]** W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig "**Achieving Human Parity in Conversational Speech Recognition**." arXiv preprint arXiv:1610.05256 (2016). [[pdf]](https://arxiv.org/pdf/1610.05256v1) **(State-of-the-art in speech recognition, Microsoft)** :star::star::star::star:

>After reading above papers, you will have a basic understanding of the Deep Learning history, the basic architectures of Deep Learning model(including CNN, RNN, LSTM) and how deep learning can be applied to image and speech recognition issues. The following papers will take you in-depth understanding of the Deep Learning method, Deep Learning in different areas of application and the frontiers. I suggest that you can choose the following papers based on your interests and research direction.
> After reading above papers, you will have a basic understanding of the Deep Learning history, the basic architectures of Deep Learning model(including CNN, RNN, LSTM) and how deep learning can be applied to image and speech recognition issues. The following papers will take you in-depth understanding of the Deep Learning method, Deep Learning in different areas of application and the frontiers. I suggest that you can choose the following papers based on your interests and research direction.

#2 Deep Learning Method

Expand All @@ -72,7 +71,7 @@ I would continue adding papers to this roadmap.

**[17]** Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "**Layer normalization**." arXiv preprint arXiv:1607.06450 (2016). [[pdf]](https://arxiv.org/pdf/1607.06450.pdf?utm_source=sciontist.com&utm_medium=refer&utm_campaign=promote) **(Update of Batch Normalization)** :star::star::star::star:

**[18]** Courbariaux, Matthieu, et al. "**Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or−1**." [[pdf]](https://pdfs.semanticscholar.org/f832/b16cb367802609d91d400085eb87d630212a.pdf) **(New Model,Fast)** :star::star::star:
**[18]** Courbariaux, Matthieu, et al. "**Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or−1**." [[pdf]](https://pdfs.semanticscholar.org/f832/b16cb367802609d91d400085eb87d630212a.pdf) **(New Model,Fast)** :star::star::star:

**[19]** Jaderberg, Max, et al. "**Decoupled neural interfaces using synthetic gradients**." arXiv preprint arXiv:1608.05343 (2016). [[pdf]](https://arxiv.org/pdf/1608.05343) **(Innovation of Training Method,Amazing Work)** :star::star::star::star::star:

Expand All @@ -82,7 +81,7 @@ I would continue adding papers to this roadmap.

## 2.2 Optimization

**[22]** Sutskever, Ilya, et al. "**On the importance of initialization and momentum in deep learning**." ICML (3) 28 (2013): 1139-1147. [[pdf]](http://www.jmlr.org/proceedings/papers/v28/sutskever13.pdf) **(Momentum optimizer)** :star::star:
**[22]** Sutskever, Ilya, et al. "**On the importance of initialization and momentum in deep learning**." ICML (3) 28 (2013): 1139-1147. [[pdf]](https://proceedings.mlr.press/v28/sutskever13.pdf) **(Momentum optimizer)** :star::star:

**[23]** Kingma, Diederik, and Jimmy Ba. "**Adam: A method for stochastic optimization**." arXiv preprint arXiv:1412.6980 (2014). [[pdf]](http://arxiv.org/pdf/1412.6980) **(Maybe used most often currently)** :star::star::star:

Expand All @@ -96,22 +95,21 @@ I would continue adding papers to this roadmap.

## 2.3 Unsupervised Learning / Deep Generative Model

**[28]** Le, Quoc V. "**Building high-level features using large scale unsupervised learning**." 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [[pdf]](http://arxiv.org/pdf/1112.6209.pdf&embed) **(Milestone, Andrew Ng, Google Brain Project, Cat)** :star::star::star::star:

**[28]** Le, Quoc V. "**Building high-level features using large scale unsupervised learning**." 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [[pdf]](https://arxiv.org/pdf/1112.6209) **(Milestone, Andrew Ng, Google Brain Project, Cat)** :star::star::star::star:

**[29]** Kingma, Diederik P., and Max Welling. "**Auto-encoding variational bayes**." arXiv preprint arXiv:1312.6114 (2013). [[pdf]](http://arxiv.org/pdf/1312.6114) **(VAE)** :star::star::star::star:

**[30]** Goodfellow, Ian, et al. "**Generative adversarial nets**." Advances in Neural Information Processing Systems. 2014. [[pdf]](http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf) **(GAN,super cool idea)** :star::star::star::star::star:

**[31]** Radford, Alec, Luke Metz, and Soumith Chintala. "**Unsupervised representation learning with deep convolutional generative adversarial networks**." arXiv preprint arXiv:1511.06434 (2015). [[pdf]](http://arxiv.org/pdf/1511.06434) **(DCGAN)** :star::star::star::star:

**[32]** Gregor, Karol, et al. "**DRAW: A recurrent neural network for image generation**." arXiv preprint arXiv:1502.04623 (2015). [[pdf]](http://jmlr.org/proceedings/papers/v37/gregor15.pdf) **(VAE with attention, outstanding work)** :star::star::star::star::star:
**[32]** Gregor, Karol, et al. "**DRAW: A recurrent neural network for image generation**." arXiv preprint arXiv:1502.04623 (2015). [[pdf]](https://arxiv.org/pdf/1502.04623) **(VAE with attention, outstanding work)** :star::star::star::star::star:

**[33]** Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "**Pixel recurrent neural networks**." arXiv preprint arXiv:1601.06759 (2016). [[pdf]](http://arxiv.org/pdf/1601.06759) **(PixelRNN)** :star::star::star::star:

**[34]** Oord, Aaron van den, et al. "Conditional image generation with PixelCNN decoders." arXiv preprint arXiv:1606.05328 (2016). [[pdf]](https://arxiv.org/pdf/1606.05328) **(PixelCNN)** :star::star::star::star:

**[34]** S. Mehri et al., "**SampleRNN: An Unconditional End-to-End Neural Audio Generation Model**." arXiv preprint arXiv:1612.07837 (2016). [[pdf]](https://arxiv.org/pdf/1612.07837.pdf) :star::star::star::star::star:
**[34]** S. Mehri et al., "**SampleRNN: An Unconditional End-to-End Neural Audio Generation Model**." arXiv preprint arXiv:1612.07837 (2016). [[pdf]](https://arxiv.org/pdf/1612.07837.pdf) :star::star::star::star::star:

## 2.4 RNN / Sequence-to-Sequence Model

Expand All @@ -123,7 +121,7 @@ I would continue adding papers to this roadmap.

**[38]** Bahdanau, Dzmitry, KyungHyun Cho, and Yoshua Bengio. "**Neural Machine Translation by Jointly Learning to Align and Translate**." arXiv preprint arXiv:1409.0473 (2014). [[pdf]](https://arxiv.org/pdf/1409.0473v7.pdf) :star::star::star::star:

**[39]** Vinyals, Oriol, and Quoc Le. "**A neural conversational model**." arXiv preprint arXiv:1506.05869 (2015). [[pdf]](http://arxiv.org/pdf/1506.05869.pdf%20(http://arxiv.org/pdf/1506.05869.pdf)) **(Seq-to-Seq on Chatbot)** :star::star::star:
**[39]** Vinyals, Oriol, and Quoc Le. "**A neural conversational model**." arXiv preprint arXiv:1506.05869 (2015). [[pdf]](https://arxiv.org/pdf/1506.05869) **(Seq-to-Seq on Chatbot)** :star::star::star:

## 2.5 Neural Turing Machine

Expand All @@ -133,7 +131,6 @@ I would continue adding papers to this roadmap.

**[42]** Weston, Jason, Sumit Chopra, and Antoine Bordes. "**Memory networks**." arXiv preprint arXiv:1410.3916 (2014). [[pdf]](http://arxiv.org/pdf/1410.3916) :star::star::star:


**[43]** Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. "**End-to-end memory networks**." Advances in neural information processing systems. 2015. [[pdf]](http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf) :star::star::star::star:

**[44]** Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "**Pointer networks**." Advances in Neural Information Processing Systems. 2015. [[pdf]](http://papers.nips.cc/paper/5866-pointer-networks.pdf) :star::star::star::star:
Expand All @@ -146,23 +143,23 @@ I would continue adding papers to this roadmap.

**[47]** Mnih, Volodymyr, et al. "**Human-level control through deep reinforcement learning**." Nature 518.7540 (2015): 529-533. [[pdf]](https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf) **(Milestone)** :star::star::star::star::star:

**[48]** Wang, Ziyu, Nando de Freitas, and Marc Lanctot. "**Dueling network architectures for deep reinforcement learning**." arXiv preprint arXiv:1511.06581 (2015). [[pdf]](http://arxiv.org/pdf/1511.06581) **(ICLR best paper,great idea)** :star::star::star::star:
**[48]** Wang, Ziyu, Nando de Freitas, and Marc Lanctot. "**Dueling network architectures for deep reinforcement learning**." arXiv preprint arXiv:1511.06581 (2015). [[pdf]](http://arxiv.org/pdf/1511.06581) **(ICLR best paper,great idea)** :star::star::star::star:

**[49]** Mnih, Volodymyr, et al. "**Asynchronous methods for deep reinforcement learning**." arXiv preprint arXiv:1602.01783 (2016). [[pdf]](http://arxiv.org/pdf/1602.01783) **(State-of-the-art method)** :star::star::star::star::star:

**[50]** Lillicrap, Timothy P., et al. "**Continuous control with deep reinforcement learning**." arXiv preprint arXiv:1509.02971 (2015). [[pdf]](http://arxiv.org/pdf/1509.02971) **(DDPG)** :star::star::star::star:

**[51]** Gu, Shixiang, et al. "**Continuous Deep Q-Learning with Model-based Acceleration**." arXiv preprint arXiv:1603.00748 (2016). [[pdf]](http://arxiv.org/pdf/1603.00748) **(NAF)** :star::star::star::star:

**[52]** Schulman, John, et al. "**Trust region policy optimization**." CoRR, abs/1502.05477 (2015). [[pdf]](http://www.jmlr.org/proceedings/papers/v37/schulman15.pdf) **(TRPO)** :star::star::star::star:
**[52]** Schulman, John, et al. "**Trust region policy optimization**." CoRR, abs/1502.05477 (2015). [[pdf]](https://arxiv.org/pdf/1502.05477) **(TRPO)** :star::star::star::star:

**[53]** Silver, David, et al. "**Mastering the game of Go with deep neural networks and tree search**." Nature 529.7587 (2016): 484-489. [[pdf]](http://willamette.edu/~levenick/cs448/goNature.pdf) **(AlphaGo)** :star::star::star::star::star:
**[53]** Silver, David, et al. "**Mastering the game of Go with deep neural networks and tree search**." Nature 529.7587 (2016): 484-489. [[pdf]](https://www.davidsilver.uk/wp-content/uploads/2020/03/unformatted_final_mastering_go.pdf) **(AlphaGo)** :star::star::star::star::star:

## 2.7 Deep Transfer Learning / Lifelong Learning / especially for RL

**[54]** Bengio, Yoshua. "**Deep Learning of Representations for Unsupervised and Transfer Learning**." ICML Unsupervised and Transfer Learning 27 (2012): 17-36. [[pdf]](http://www.jmlr.org/proceedings/papers/v27/bengio12a/bengio12a.pdf) **(A Tutorial)** :star::star::star:
**[54]** Bengio, Yoshua. "**Deep Learning of Representations for Unsupervised and Transfer Learning**." ICML Unsupervised and Transfer Learning 27 (2012): 17-36. [[pdf]](https://proceedings.mlr.press/v27/bengio12a/bengio12a.pdf) **(A Tutorial)** :star::star::star:

**[55]** Silver, Daniel L., Qiang Yang, and Lianghao Li. "**Lifelong Machine Learning Systems: Beyond Learning Algorithms**." AAAI Spring Symposium: Lifelong Machine Learning. 2013. [[pdf]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.7800&rep=rep1&type=pdf) **(A brief discussion about lifelong learning)** :star::star::star:
**[55]** Silver, Daniel L., Qiang Yang, and Lianghao Li. "**Lifelong Machine Learning Systems: Beyond Learning Algorithms**." AAAI Spring Symposium: Lifelong Machine Learning. 2013. [[pdf]](https://axon.cs.byu.edu/~martinez/classes/678/Presentations/Martin.pdf) **(A brief discussion about lifelong learning)** :star::star::star:

**[56]** Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "**Distilling the knowledge in a neural network**." arXiv preprint arXiv:1503.02531 (2015). [[pdf]](http://arxiv.org/pdf/1503.02531) **(Godfather's Work)** :star::star::star::star:

Expand All @@ -172,20 +169,18 @@ I would continue adding papers to this roadmap.

**[59]** Rusu, Andrei A., et al. "**Progressive neural networks**." arXiv preprint arXiv:1606.04671 (2016). [[pdf]](https://arxiv.org/pdf/1606.04671) **(Outstanding Work, A novel idea)** :star::star::star::star::star:


## 2.8 One Shot Deep Learning

**[60]** Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. "**Human-level concept learning through probabilistic program induction**." Science 350.6266 (2015): 1332-1338. [[pdf]](http://clm.utexas.edu/compjclub/wp-content/uploads/2016/02/lake2015.pdf) **(No Deep Learning,but worth reading)** :star::star::star::star::star:
**[60]** Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. "**Human-level concept learning through probabilistic program induction**." Science 350.6266 (2015): 1332-1338. [[pdf]](https://www.cs.cmu.edu/~rsalakhu/papers/LakeEtAl2015Science.pdf) **(No Deep Learning,but worth reading)** :star::star::star::star::star:

**[61]** Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. "**Siamese Neural Networks for One-shot Image Recognition**."(2015) [[pdf]](http://www.cs.utoronto.ca/~gkoch/files/msc-thesis.pdf) :star::star::star:
**[61]** Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. "**Siamese Neural Networks for One-shot Image Recognition**."(2015) [[pdf]](https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf) :star::star::star:

**[62]** Santoro, Adam, et al. "**One-shot Learning with Memory-Augmented Neural Networks**." arXiv preprint arXiv:1605.06065 (2016). [[pdf]](http://arxiv.org/pdf/1605.06065) **(A basic step to one shot learning)** :star::star::star::star:

**[63]** Vinyals, Oriol, et al. "**Matching Networks for One Shot Learning**." arXiv preprint arXiv:1606.04080 (2016). [[pdf]](https://arxiv.org/pdf/1606.04080) :star::star::star:

**[64]** Hariharan, Bharath, and Ross Girshick. "**Low-shot visual object recognition**." arXiv preprint arXiv:1606.02819 (2016). [[pdf]](http://arxiv.org/pdf/1606.02819) **(A step to large data)** :star::star::star::star:


# 3 Applications

## 3.1 NLP(Natural Language Processing)
Expand Down Expand Up @@ -229,12 +224,10 @@ Region-based Fully Convolutional Networks**." arXiv preprint arXiv:1605.06409 (2

**[9]** He, Gkioxari, et al. "**Mask R-CNN**" arXiv preprint arXiv:1703.06870 (2017). [[pdf]](https://arxiv.org/abs/1703.06870) :star::star::star::star:

**[10]** Bochkovskiy, Alexey, et al. "**YOLOv4: Optimal Speed and Accuracy of Object Detection.**" arXiv preprint arXiv:2004.10934 (2020). [[pdf]](https://arxiv.org/pdf/2004.10934) :star::star::star::star:

**[10]** Bochkovskiy, Alexey, et al. "**YOLOv4: Optimal Speed and Accuracy of Object Detection.**" arXiv preprint arXiv:2004.10934 (2020). [[pdf]](https://arxiv.org/pdf/2004.10934) :star::star::star::star:

**[11]** Tan, Mingxing, et al. “**EfficientDet: Scalable and Efficient Object Detection.**" arXiv preprint arXiv:1911.09070 (2019). [[pdf]](https://arxiv.org/pdf/1911.09070) :star::star::star::star::star:


## 3.3 Visual Tracking

**[1]** Wang, Naiyan, and Dit-Yan Yeung. "**Learning a deep compact image representation for visual tracking**." Advances in neural information processing systems. 2013. [[pdf]](http://papers.nips.cc/paper/5192-learning-a-deep-compact-image-representation-for-visual-tracking.pdf) **(First Paper to do visual tracking using Deep Learning,DLT Tracker)** :star::star::star:
Expand All @@ -252,6 +245,7 @@ Region-based Fully Convolutional Networks**." arXiv preprint arXiv:1605.06409 (2
**[7]** Nam, Hyeonseob, Mooyeol Baek, and Bohyung Han. "**Modeling and Propagating CNNs in a Tree Structure for Visual Tracking**." arXiv preprint arXiv:1608.07242 (2016). [[pdf]](https://arxiv.org/pdf/1608.07242) **(VOT2016 Winner,TCNN)** :star::star::star::star:

## 3.4 Image Caption

**[1]** Farhadi,Ali,etal. "**Every picture tells a story: Generating sentences from images**". In Computer VisionECCV 2010. Springer Berlin Heidelberg:15-29, 2010. [[pdf]](https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf) :star::star::star:

**[2]** Kulkarni, Girish, et al. "**Baby talk: Understanding and generating image descriptions**". In Proceedings of the 24th CVPR, 2011. [[pdf]](http://tamaraberg.com/papers/generation_cvpr11.pdf):star::star::star::star:
Expand All @@ -278,7 +272,6 @@ Region-based Fully Convolutional Networks**." arXiv preprint arXiv:1605.06409 (2

**[1]** Luong, Minh-Thang, et al. "**Addressing the rare word problem in neural machine translation**." arXiv preprint arXiv:1410.8206 (2014). [[pdf]](http://arxiv.org/pdf/1410.8206) :star::star::star::star:


**[2]** Sennrich, et al. "**Neural Machine Translation of Rare Words with Subword Units**". In arXiv preprint arXiv:1508.07909, 2015. [[pdf]](https://arxiv.org/pdf/1508.07909.pdf):star::star::star:

**[3]** Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. "**Effective approaches to attention-based neural machine translation**." arXiv preprint arXiv:1508.04025 (2015). [[pdf]](http://arxiv.org/pdf/1508.04025) :star::star::star::star:
Expand Down Expand Up @@ -343,5 +336,3 @@ Region-based Fully Convolutional Networks**." arXiv preprint arXiv:1605.06409 (2
**[4]** Dai, J., He, K., Sun, J. "**Instance-aware semantic segmentation via multi-task network cascades**." in CVPR. 2016 [[pdf]](https://arxiv.org/pdf/1512.04412v1.pdf) :star::star::star:

**[5]** Dai, J., He, K., Sun, J. "**Instance-sensitive Fully Convolutional Networks**." arXiv preprint arXiv:1603.08678 (2016). [[pdf]](https://arxiv.org/pdf/1603.08678v1.pdf) :star::star::star: