Skip to content

Add TFlops calculator and stuck job monitor #208

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 68 additions & 0 deletions src/sagemaker_training/job_monitor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
import boto3

from datetime import datetime, timezone
from dateutil.relativedelta import relativedelta

from sagemaker_training import (
logging_config,
)

logger = logging_config.get_logger()
SAGEMAKER_TRAINING_JOB_LOG_GROUP = '/aws/sagemaker/TrainingJobs'
STUCK_JOB_MONITOR_SLEEP_TIME = 300

class JobMonitor:
def __init__(self, region, missing_cw_log_output_limit_mins, filter_keywords = []):
self.region=region
session = boto3.Session(region_name=region)
self.logs_client = session.client('logs', region)
self.missing_cw_log_output_limit_mins = missing_cw_log_output_limit_mins
self.log_group_name = SAGEMAKER_TRAINING_JOB_LOG_GROUP
self.filter_pattern = " ".join([f'"{word}"' for word in filter_keywords])
self.current_time = str(datetime.now(timezone.utc)).split('.', maxsplit=1)[0]
self.sleep_time_secs = STUCK_JOB_MONITOR_SLEEP_TIME

# pylint: disable=too-many-arguments
def get_log_events_from_stream(self, log_group, log_stream_name, start_time, end_time, filter_pattern = ""):
start_time = datetime.strptime(start_time, "%Y-%m-%d %H:%M:%S")
end_time = datetime.strptime(end_time, "%Y-%m-%d %H:%M:%S")

# Convert datetime to milliseconds since the epoch
epoch_time = datetime(1970, 1, 1)
start_timestamp = int((start_time - epoch_time).total_seconds() * 1000)
end_timestamp = int((end_time - epoch_time).total_seconds() * 1000)

next_token = None
all_events = []

while True:
args = {
"logGroupName": log_group,
"logStreamNames": [log_stream_name],
"startTime": start_timestamp,
"endTime": end_timestamp,
"filterPattern": filter_pattern
}

if next_token:
args["nextToken"] = next_token

response = self.logs_client.filter_log_events(**args)
all_events.extend(response.get('events', []))

next_token = response.get('nextToken')
if not next_token:
break
return all_events

# Usage
# if detect_stuck_training_job(job_log_stream_name):
# logger.info("Training job is stuck. Exiting...")
# sys.exit(1)
def detect_stuck_training_job(self, job_log_stream_name):
start_time_epoch_query = datetime.strptime(self.current_time, '%Y-%m-%d %H:%M:%S')
start_time_epoch_query = str(start_time_epoch_query - relativedelta(minutes = self.missing_cw_log_output_limit_mins))
logs = self.get_log_events_from_stream(self.log_group_name, job_log_stream_name, start_time_epoch_query, self.current_time, filter_pattern=self.filter_pattern)
logger.info(f"Number of expected log extry discovered in the past {self.missing_cw_log_output_limit_mins} minutes: {len(logs)}")
# if there is no expected log entry in the past self.missing_cw_log_output_limit_mins, then the training job is stuck
return len(logs) == 0
39 changes: 39 additions & 0 deletions src/sagemaker_training/tflops_calculator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
from sagemaker_training import (
environment,
logging_config,
)

logger = logging_config.get_logger()
class TflopsCalculator:
def __init__(self):
pass

def get_model_tflops(self, num_params, iter_time, tokens_per_gpu, attention=0):
# Calculated according to https://arxiv.org/pdf/2204.02311.pdf
model_tflops = ((6 * num_params + 12 * attention) * (tokens_per_gpu / iter_time)) / 1e12
return model_tflops

def compute_mfu(self, num_params, iter_time, tokens_per_gpu, world_size, attention=0):
R = 312*1e12 / (6*num_params)
tokens_per_second = (tokens_per_gpu * world_size)/iter_time
env = environment.Environment()
if env.master_hostname == env.current_host:
logger.info(f"R: {R}")
logger.info(f"Tokens per second: {tokens_per_second}")
logger.info(f"Iter time: {iter_time}")
logger.info(f"Tokens per GPU: {tokens_per_gpu}")
logger.info(f"Num params: {num_params}")
logger.info(f"World size: {world_size}")
logger.info(f"Attention: {attention}")
logger.info(f"MFU: {(tokens_per_second / R) * 100}")
logger.info(f"Model TFLOPS/GPU: {self.get_model_tflops(num_params, iter_time, tokens_per_gpu)}")
logger.info(f"Model TFLOPS/GPU (with attention): {self.get_model_tflops(num_params, iter_time, tokens_per_gpu, attention)}")

def log_tflops(self, num_params, iter_time, tokens_per_gpu, attention=0):
model_tflops = self.get_model_tflops(num_params, iter_time, tokens_per_gpu, attention)
env = environment.Environment()
if env.master_hostname == env.current_host:
logger.info(f"Num params: {num_params}")
logger.info(f"Iter time: {iter_time}")
logger.info(f"Tokens per GPU: {tokens_per_gpu}")
logger.info(f"Model TFLOPS/GPU: {model_tflops}")