Skip to content

ShanZard/Semantic-segmentation-framework

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Semantic-segmentation-framework

This is a semantic segmentation framework, it can be easy to read and learn. It also can add your network and dataset to train.

0. Quick start

  1. Git clone from GitHub.
git clone https://github.com/ShanZard/Semantic-segmentation-framework.git
  1. cd to Semantic-segmentation-framework
cd Semantic-segmentation-framework
  1. install requirements
pip install -r requirements

1. Dataset

  1. Should organize dataset like this:
├── data
│   ├── your_dataset
|   |   |——train
|   |   |   ├── images
│   │   │   │   ├── xxx{img_suffix}
│   │   │   │   ├── yyy{img_suffix}
│   │   │   │   ├── zzz{img_suffix}
│   │   │   ├── mask
│   │   │   │   ├── xxx{seg_map_suffix}
│   │   │   │   ├── yyy{seg_map_suffix}
│   │   │   │   ├── zzz{seg_map_suffix}
│   │   ├── val/test
│   │   │   ├── images
│   │   │   │   ├── xxx{img_suffix}
│   │   │   │   ├── yyy{img_suffix}
│   │   │   │   ├── zzz{img_suffix}
│   │   │   ├── mask
│   │   │   │   ├── xxx{seg_map_suffix}
│   │   │   │   ├── yyy{seg_map_suffix}
│   │   │   │   ├── zzz{seg_map_suffix}

Note:

  1. images names should be same as mask
  2. mask should be [h,w], if your mask is RGB[3,h,w], you can use tools/pre_processdataset.py to convert it .

2. Before train

  1. should change utils/palette.py
  2. change your args in train.py

3. Test

About

This is a semantic segmentation framework ,it use tensorboard to visualize training process.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages