|
235 | 235 | "\n",
|
236 | 236 | "tree.map_over_datasets(demean)"
|
237 | 237 | ]
|
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "markdown", |
| 241 | + "id": "21", |
| 242 | + "metadata": {}, |
| 243 | + "source": [ |
| 244 | + "## Escape hatches\n", |
| 245 | + "\n", |
| 246 | + "For some more complex operations, it might make sense to work on {py:class}`xarray.Dataset` or {py:class}`xarray.DataArray` objects and reassemble the tree afterwards.\n", |
| 247 | + "\n", |
| 248 | + "Let's look at a new dataset:" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "code", |
| 253 | + "execution_count": null, |
| 254 | + "id": "22", |
| 255 | + "metadata": {}, |
| 256 | + "outputs": [], |
| 257 | + "source": [ |
| 258 | + "precipitation = xr.tutorial.open_datatree(\"precipitation.nc4\").load()\n", |
| 259 | + "precipitation" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "markdown", |
| 264 | + "id": "23", |
| 265 | + "metadata": {}, |
| 266 | + "source": [ |
| 267 | + "Suppose we wanted to interpolate the observed precipitation to the modelled precipitation. We could use `map_over_datasets` for this, but we can also have a bit more control:" |
| 268 | + ] |
| 269 | + }, |
| 270 | + { |
| 271 | + "cell_type": "code", |
| 272 | + "execution_count": null, |
| 273 | + "id": "24", |
| 274 | + "metadata": {}, |
| 275 | + "outputs": [], |
| 276 | + "source": [ |
| 277 | + "interpolated = xr.DataTree.from_dict(\n", |
| 278 | + " {\n", |
| 279 | + " \"/\": precipitation.ds,\n", |
| 280 | + " \"/observed\": precipitation[\"/observed\"].ds.interp(\n", |
| 281 | + " lat=precipitation[\"/reanalysis/lat\"],\n", |
| 282 | + " lon=precipitation[\"/reanalysis/lon\"],\n", |
| 283 | + " ),\n", |
| 284 | + " \"/reanalysis\": precipitation[\"/reanalysis\"],\n", |
| 285 | + " }\n", |
| 286 | + ")\n", |
| 287 | + "interpolated" |
| 288 | + ] |
| 289 | + }, |
| 290 | + { |
| 291 | + "cell_type": "markdown", |
| 292 | + "id": "25", |
| 293 | + "metadata": {}, |
| 294 | + "source": [ |
| 295 | + "::::{admonition} Exercise\n", |
| 296 | + ":class: tip\n", |
| 297 | + "Compute the difference between total observed and modelled precipitation, and plot the result.\n", |
| 298 | + "\n", |
| 299 | + ":::{admonition} Solution\n", |
| 300 | + ":class: dropdown\n", |
| 301 | + "\n", |
| 302 | + "```python\n", |
| 303 | + "total = precipitation.sum(dim=[\"lon\", \"lat\"])\n", |
| 304 | + "difference = total[\"/observed/precipitation\"] - total[\"/reanalysis/precipitation\"]\n", |
| 305 | + "difference.plot()\n", |
| 306 | + "```\n", |
| 307 | + ":::\n", |
| 308 | + "::::\n" |
| 309 | + ] |
238 | 310 | }
|
239 | 311 | ],
|
240 | 312 | "metadata": {
|
|
0 commit comments