Skip to content

How to re-use a WrappedRamTensor and provide new input data #59

Open
@RajeshSiraskar

Description

@RajeshSiraskar

Hi,

I am beginner with uTensor and embedded C/C++. I have a little experience around Python and wanted to study development of intelligence at the edge by building models in Python and deploying on Cortex boards. @neil-tan helped me understand the basics and I used his tutorial to begin this understanding.

So passing the input data, wrapped in a WrappedRamTensor works great the 1st time. When I try to provide another instance of input data and do a second pass - it gives me an error. What could I be doing wrong? Does input data tensor have to be thread-safe?

Output with the error

[1] First instance of prediction: For input 10.000
 Input: 10.000 | Expected: 72.999 | Predicted: 71.871

 [2] Second instance of prediction: For input 40.000
[Error] lib\uTensor\core\context.cpp:96 @push Tensor "Placeholder:0" not found

Source code

  // A single value is being used so Tensor shape is {1, 1} 
  float input_data[1] = {10.0}; 
  Tensor* input_x = new WrappedRamTensor<float>({1, 1}, (float*) &input_data);

  // Value predicted by LR model
  S_TENSOR pred_tensor;         
  float pred_value;             
  
  // Compute model value for comparison
  float W = 6.968;
  float B = 3.319;
  float y;

  // First pass: Constant value 10.0 and evaluate first time:
  printf("\n [1] First instance of prediction: For input %4.3f", input_data[0]);
  get_LR_model_ctx(ctx, input_x);                   // Pass the 'input' data tensor to the context
  pred_tensor = ctx.get("y_pred:0");                // Get a reference to the 'output' tensor
  ctx.eval();                                       // Trigger the inference engine
  pred_value = *(pred_tensor->read<float>(0, 0));   // Get the result back

  y = W * input_data[0] + B;                        // Expected output

  printf("\n Input: %04.3f | Expected: %04.3f | Predicted: %04.3f", input_data[0], y, pred_value);
  
  // Second pass: Change input data and re-evalaute:
  input_data[0] = 40.0;
  printf("\n\n [2] Second instance of prediction: For input %4.3f\n", input_data[0]);
  get_LR_model_ctx(ctx, input_x);                   // Pass the 'input' data tensor to the context
  pred_tensor = ctx.get("y_pred:0");                // Get a reference to the 'output' tensor
  ctx.eval();                                       // Trigger the inference engine
  pred_value = *(pred_tensor->read<float>(0, 0));   // Get the result back

  y = W * input_data[0] + B;                        // Expected output

  printf("\n Input: %04.3f | Expected: %04.3f | Predicted: %04.3f", input_data[0], y, pred_value);
  
  printf("\n -------------------------------------------------------------------\n");
  return 0;
}

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions