-
Notifications
You must be signed in to change notification settings - Fork 155
Open
Description
torch.compile fails for SparseTensor.matmul
torch version: 2.6.0
pytorch_sparse version: 0.6.18 py312hf276b08_7 from conda-forge
reproducer:
import torch
from torch_sparse import SparseTensor
import scipy.sparse as sp
import numpy as np
def test_compile_sparse(size = 100, density = 0.01):
coo = sp.random_array(shape=(size, size), density=density, dtype=np.float32)
x_np = np.random.rand(size).astype(np.float32)
values = torch.tensor(coo.data, device="cuda")
x = torch.tensor(x_np, device="cuda")
@torch.compile
def fn(values, x):
coo_tensor = SparseTensor(
row=torch.tensor(coo.row, device="cuda", dtype=torch.long),
col=torch.tensor(coo.col, device="cuda", dtype=torch.long),
value=values,
sparse_sizes=coo.shape,
)
coo_tensor.matmul(x.unsqueeze(1)).sum()
fn(values, x)
test_compile_sparse()
Full error message
/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/utils.py:2586: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
return node.target(*args, **kwargs)
/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/utils.py:2586: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
return node.target(*args, **kwargs)
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0] Graph break from `Tensor.item()`, consider setting:
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0] torch._dynamo.config.capture_scalar_outputs = True
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0] or:
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0] env TORCHDYNAMO_CAPTURE_SCALAR_OUTPUTS=1
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0] to include these operations in the captured graph.
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0]
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0] Graph break: from user code at:
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0] File "/tmp/test.py", line 14, in fn
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0] coo_tensor = SparseTensor(
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0] File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch_sparse/tensor.py", line 26, in __init__
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0] self.storage = SparseStorage(
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0] File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch_sparse/storage.py", line 69, in __init__
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0] assert trust_data or int(row.max()) < M
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0]
W0519 22:51:51.846000 206303 site-packages/torch/_dynamo/variables/tensor.py:869] [0/0]
/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/utils.py:2586: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
return node.target(*args, **kwargs)
/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/utils.py:2586: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
return node.target(*args, **kwargs)
/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/fx/interpreter.py:310: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
return target(*args, **kwargs)
/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/fx/experimental/proxy_tensor.py:1241: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
return func(*args, **kwargs)
Traceback (most recent call last):
File "/tmp/test.py", line 23, in <module>
test_compile_sparse()
File "/tmp/test.py", line 21, in test_compile_sparse
fn(values, x)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 574, in _fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/tmp/test.py", line 12, in fn
@torch.compile
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 1380, in __call__
return self._torchdynamo_orig_callable(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 1164, in __call__
result = self._inner_convert(
^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 547, in __call__
return _compile(
^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 986, in _compile
guarded_code = compile_inner(code, one_graph, hooks, transform)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 715, in compile_inner
return _compile_inner(code, one_graph, hooks, transform)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_utils_internal.py", line 95, in wrapper_function
return function(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 750, in _compile_inner
out_code = transform_code_object(code, transform)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/bytecode_transformation.py", line 1361, in transform_code_object
transformations(instructions, code_options)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 231, in _fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 662, in transform
tracer.run()
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2868, in run
super().run()
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 1052, in run
while self.step():
^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 962, in step
self.dispatch_table[inst.opcode](self, inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 659, in wrapper
return inner_fn(self, inst)
^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2341, in CALL
self._call(inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2335, in _call
self.call_function(fn, args, kwargs)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 897, in call_function
self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 378, in call_function
return super().call_function(tx, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 317, in call_function
return super().call_function(tx, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 118, in call_function
return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 903, in inline_user_function_return
return InliningInstructionTranslator.inline_call(self, fn, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3072, in inline_call
return cls.inline_call_(parent, func, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3198, in inline_call_
tracer.run()
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 1052, in run
while self.step():
^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 962, in step
self.dispatch_table[inst.opcode](self, inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 659, in wrapper
return inner_fn(self, inst)
^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2341, in CALL
self._call(inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2335, in _call
self.call_function(fn, args, kwargs)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 897, in call_function
self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 317, in call_function
return super().call_function(tx, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 118, in call_function
return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 903, in inline_user_function_return
return InliningInstructionTranslator.inline_call(self, fn, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3072, in inline_call
return cls.inline_call_(parent, func, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3198, in inline_call_
tracer.run()
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 1052, in run
while self.step():
^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 962, in step
self.dispatch_table[inst.opcode](self, inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 659, in wrapper
return inner_fn(self, inst)
^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2341, in CALL
self._call(inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2335, in _call
self.call_function(fn, args, kwargs)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 897, in call_function
self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 317, in call_function
return super().call_function(tx, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 118, in call_function
return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 903, in inline_user_function_return
return InliningInstructionTranslator.inline_call(self, fn, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3072, in inline_call
return cls.inline_call_(parent, func, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3198, in inline_call_
tracer.run()
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 1052, in run
while self.step():
^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 962, in step
self.dispatch_table[inst.opcode](self, inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 659, in wrapper
return inner_fn(self, inst)
^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2341, in CALL
self._call(inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2335, in _call
self.call_function(fn, args, kwargs)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 897, in call_function
self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 317, in call_function
return super().call_function(tx, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 118, in call_function
return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 903, in inline_user_function_return
return InliningInstructionTranslator.inline_call(self, fn, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3072, in inline_call
return cls.inline_call_(parent, func, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3198, in inline_call_
tracer.run()
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 1052, in run
while self.step():
^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 962, in step
self.dispatch_table[inst.opcode](self, inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 659, in wrapper
return inner_fn(self, inst)
^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2341, in CALL
self._call(inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2335, in _call
self.call_function(fn, args, kwargs)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 897, in call_function
self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 378, in call_function
return super().call_function(tx, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 317, in call_function
return super().call_function(tx, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 118, in call_function
return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 903, in inline_user_function_return
return InliningInstructionTranslator.inline_call(self, fn, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3072, in inline_call
return cls.inline_call_(parent, func, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3198, in inline_call_
tracer.run()
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 1052, in run
while self.step():
^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 962, in step
self.dispatch_table[inst.opcode](self, inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 659, in wrapper
return inner_fn(self, inst)
^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2341, in CALL
self._call(inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2335, in _call
self.call_function(fn, args, kwargs)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 897, in call_function
self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 378, in call_function
return super().call_function(tx, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 317, in call_function
return super().call_function(tx, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/functions.py", line 118, in call_function
return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 903, in inline_user_function_return
return InliningInstructionTranslator.inline_call(self, fn, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3072, in inline_call
return cls.inline_call_(parent, func, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3198, in inline_call_
tracer.run()
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 1052, in run
while self.step():
^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 962, in step
self.dispatch_table[inst.opcode](self, inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 659, in wrapper
return inner_fn(self, inst)
^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2341, in CALL
self._call(inst)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 2335, in _call
self.call_function(fn, args, kwargs)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 897, in call_function
self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/torch.py", line 953, in call_function
tensor_variable = wrap_fx_proxy(
^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py", line 2153, in wrap_fx_proxy
return wrap_fx_proxy_cls(target_cls=TensorVariable, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py", line 2219, in wrap_fx_proxy_cls
return _wrap_fx_proxy(
^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py", line 2315, in _wrap_fx_proxy
example_value = get_fake_value(proxy.node, tx, allow_non_graph_fake=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/utils.py", line 2536, in get_fake_value
raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/utils.py", line 2471, in get_fake_value
ret_val = wrap_fake_exception(
^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/utils.py", line 2017, in wrap_fake_exception
return fn()
^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/utils.py", line 2472, in <lambda>
lambda: run_node(tx.output, node, args, kwargs, nnmodule)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/utils.py", line 2604, in run_node
raise RuntimeError(make_error_message(e)).with_traceback(
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_dynamo/utils.py", line 2586, in run_node
return node.target(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch/_ops.py", line 1123, in __call__
return self._op(*args, **(kwargs or {}))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
torch._dynamo.exc.TorchRuntimeError: Failed running call_function torch_sparse.ind2ptr(*(FakeTensor(..., device='cuda:0', size=(100,), dtype=torch.int64), 100), **{}):
The tensor has a non-zero number of elements, but its data is not allocated yet.
If you're using torch.compile/export/fx, it is likely that we are erroneously tracing into a custom kernel. To fix this, please wrap the custom kernel into an opaque custom op. Please see the following for details: https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html
If you're using Caffe2, Caffe2 uses a lazy allocation, so you will need to call mutable_data() or raw_mutable_data() to actually allocate memory.
from user code:
File "/tmp/test.py", line 20, in torch_dynamo_resume_in_fn_at_14
coo_tensor.matmul(x.unsqueeze(1)).sum()
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch_sparse/matmul.py", line 169, in <lambda>
SparseTensor.matmul = lambda self, other, reduce="sum": matmul(
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch_sparse/matmul.py", line 160, in matmul
return spmm(src, other, reduce)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch_sparse/matmul.py", line 83, in spmm
return spmm_sum(src, other)
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch_sparse/matmul.py", line 10, in spmm_sum
rowptr, col, value = src.csr()
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch_sparse/tensor.py", line 237, in csr
return self.storage.rowptr(), self.storage.col(), self.storage.value()
File "/home/alexfanqi/micromamba/envs/ml-py312/lib/python3.12/site-packages/torch_sparse/storage.py", line 209, in rowptr
rowptr = torch.ops.torch_sparse.ind2ptr(row, self._sparse_sizes[0])
Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information
You can suppress this exception and fall back to eager by setting:
import torch._dynamo
torch._dynamo.config.suppress_errors = True
Metadata
Metadata
Assignees
Labels
No labels