|
| 1 | +# Whisper Transcription + Summarization + Diarization API |
| 2 | + |
| 3 | +This project provides a high-performance pipeline for **audio/video transcription**, **speaker diarization**, and **summarization** using [Faster-Whisper](https://github.com/guillaumekln/faster-whisper), Hugging Face LLMs (e.g. Mistral), and [pyannote.audio](https://github.com/pyannote/pyannote-audio). It exposes a **FastAPI-based REST API** and supports CLI usage as well. |
| 4 | + |
| 5 | +--- |
| 6 | + |
| 7 | +## Features |
| 8 | + |
| 9 | +- Transcribes audio using **Faster-Whisper** (multi-GPU support) |
| 10 | +- Summarizes long transcripts using **Mistral-7B** as a default |
| 11 | +- Performs speaker diarization via **PyAnnote** |
| 12 | +- Optional denoising using **Demucs + Noisereduce** |
| 13 | +- Supports real-time **streaming API responses** |
| 14 | +- Works on common formats: `.flac`, `.wav`, `.mp3`, `.m4a`, `.aac`, `.ogg`, `.webm`, `.opus` `.mp4`, `.mp3`, `.mov`, `.mkv`, `.avi`, etc. |
| 15 | + |
| 16 | +--- |
| 17 | + |
| 18 | +## Installation |
| 19 | + |
| 20 | +### 1. Create virtual environment |
| 21 | +```bash |
| 22 | +python3 -m venv whisper_env |
| 23 | +source whisper_env/bin/activate |
| 24 | +``` |
| 25 | + |
| 26 | +### 2. Install PyTorch (with CUDA 12.1 for H100/A100) |
| 27 | +```bash |
| 28 | +pip install torch==2.2.2+cu121 torchaudio==2.2.2+cu121 -f https://download.pytorch.org/whl/torch_stable.html |
| 29 | +``` |
| 30 | + |
| 31 | +### 3. Install requirements |
| 32 | +```bash |
| 33 | +pip install -r requirements.txt |
| 34 | +``` |
| 35 | + |
| 36 | +> Make sure to have `ffmpeg` installed on your system: |
| 37 | +```bash |
| 38 | +sudo apt install ffmpeg |
| 39 | +``` |
| 40 | + |
| 41 | +--- |
| 42 | + |
| 43 | +## Usage |
| 44 | + |
| 45 | +### CLI Transcription & Summarization |
| 46 | + |
| 47 | +```bash |
| 48 | +python faster_code_week1_v28.py \ |
| 49 | + --input /path/to/audio_or_folder \ |
| 50 | + --model medium \ |
| 51 | + --output-dir output/ \ |
| 52 | + --summarized-model mistralai/Mistral-7B-Instruct-v0.1 \ |
| 53 | + --summary \ |
| 54 | + --speaker \ |
| 55 | + --denoise \ |
| 56 | + --prop-decrease 0.7 \ |
| 57 | + --hf-token YOUR_HUGGINGFACE_TOKEN \ |
| 58 | + --streaming \ |
| 59 | + --max-speakers 2 \ |
| 60 | + --ground-truth ground_truth.txt |
| 61 | +``` |
| 62 | + |
| 63 | +**Optional flags:** |
| 64 | + |
| 65 | +| Argument | Description | |
| 66 | +|---------------------|-----------------------------------------------------------------------------| |
| 67 | +| `--input` | **Required.** Path to input file or directory of audio/video. | |
| 68 | +| `--model` | Whisper model to use (`base`, `small`, `medium`, `large`, `turbo`). Auto-detects if not specified. | |
| 69 | +| `--output-dir` | Directory to store output files. Defaults to a timestamped folder. | |
| 70 | +| `--summarized-model`| Hugging Face or local LLM for summarization. Default: `Mistral-7B`. | |
| 71 | +| `--denoise` | Enable two-stage denoising (Demucs + noisereduce). | |
| 72 | +| `--prop-decrease` | Float [0.0–1.0]. Controls noise suppression. Default = 0.7 | |
| 73 | +| `--summary` | Enable summarization after transcription. | |
| 74 | +| `--speaker` | Enable speaker diarization using PyAnnote. | |
| 75 | +| `--streaming` | Stream results in real-time chunk-by-chunk. | |
| 76 | +| `--hf-token` | Hugging Face token for gated model access. | |
| 77 | +| `--max-speakers` | Limit the number of identified speakers. Optional. | |
| 78 | +| `--ground-truth` | Path to ground truth `.txt` for WER evaluation. Optional. | |
| 79 | + |
| 80 | +--- |
| 81 | + |
| 82 | +### Start API Server |
| 83 | + |
| 84 | +```bash |
| 85 | +uvicorn whisper_api_server:app --host 0.0.0.0 --port 8000 |
| 86 | +``` |
| 87 | + |
| 88 | +### Example API Call |
| 89 | + |
| 90 | +```bash |
| 91 | +curl -X POST http://<YOUR_IP>:8000/transcribe \ |
| 92 | + -F "audio_file=@test.wav" \ |
| 93 | + -F "model=medium" \ |
| 94 | + -F "summary=true" \ |
| 95 | + -F "speaker=true" \ |
| 96 | + -F "denoise=false" \ |
| 97 | + -F "streaming=true" \ |
| 98 | + -F "hf_token=hf_xxx" \ |
| 99 | + -F "max_speakers=2" |
| 100 | +``` |
| 101 | + |
| 102 | +--- |
| 103 | + |
| 104 | +## Outputs |
| 105 | + |
| 106 | +For each input file, the pipeline generates: |
| 107 | + |
| 108 | +- `*.txt` — Transcript with speaker labels and timestamps |
| 109 | +- `*.json` — Transcript + speaker segments + summary |
| 110 | +- `transcription_log_*.log` — Full debug log for reproducibility |
| 111 | + |
| 112 | +--- |
| 113 | + |
| 114 | +## Hugging Face Token |
| 115 | + |
| 116 | +To enable **speaker diarization**, accept the model terms at: |
| 117 | +[https://huggingface.co/pyannote/segmentation](https://huggingface.co/pyannote/segmentation) |
| 118 | + |
| 119 | +Then generate a token at: |
| 120 | +[https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens) |
| 121 | + |
| 122 | +--- |
| 123 | + |
| 124 | +## Dependencies |
| 125 | + |
| 126 | +Key Python packages: |
| 127 | + |
| 128 | +- `faster-whisper` |
| 129 | +- `transformers` |
| 130 | +- `pyannote.audio` |
| 131 | +- `librosa`, `pydub`, `noisereduce` |
| 132 | +- `ffmpeg-python`, `demucs` |
| 133 | +- `fastapi`, `uvicorn`, `jiwer` |
| 134 | + |
| 135 | +--- |
| 136 | + |
| 137 | +## Notes |
| 138 | + |
| 139 | +- The API uses a **cached Whisper model per variant** for faster performance. |
| 140 | +- **Diarization is performed globally** over the entire audio, not per chunk. |
| 141 | +- **Denoising uses Demucs to isolate vocals**, which may be GPU-intensive. |
| 142 | + |
| 143 | +--- |
| 144 | + |
| 145 | + |
| 146 | + |
0 commit comments