@@ -34,8 +34,8 @@ def test_checks_on_A(size, density):
34
34
symmetric_matrix = make_symmetric (matrix )
35
35
check_square_matrix (symmetric_matrix )
36
36
37
- cp_symm_matrix = cpsp .csr_matrix (symmetric_matrix )
38
- check_square_matrix (cp_symm_matrix )
37
+ # cp_symm_matrix = cpsp.csr_matrix(symmetric_matrix)
38
+ # check_square_matrix(cp_symm_matrix)
39
39
40
40
not_so_symmetric_matrix = np .random .rand (5 , 5 )
41
41
if not_so_symmetric_matrix [1 , 2 ] == not_so_symmetric_matrix [2 , 1 ]:
@@ -64,36 +64,36 @@ def test_make_symmetric(size, density):
64
64
def test_implementations_power_method (size , density ):
65
65
matrix = sp .random (size , size , density = density , format = "csr" )
66
66
matrix = make_symmetric (matrix )
67
- cp_matrix = cpsp .csr_matrix (matrix )
67
+ # cp_matrix = cpsp.csr_matrix(matrix)
68
68
69
69
eigs_np = eigenvalues_np (matrix .toarray (), symmetric = True )
70
70
eigs_sp = eigenvalues_sp (matrix , symmetric = True )
71
- eigs_cp = eigenvalues_cp (cp_matrix )
71
+ # eigs_cp = eigenvalues_cp(cp_matrix)
72
72
73
73
index_np = np .argmax (np .abs (eigs_np ))
74
74
index_sp = np .argmax (np .abs (eigs_sp ))
75
- index_cp = np .argmax (np .abs (eigs_cp ))
75
+ # index_cp = np.argmax(np.abs(eigs_cp))
76
76
77
77
biggest_eigenvalue_np = eigs_np [index_np ]
78
78
biggest_eigenvalue_sp = eigs_sp [index_sp ]
79
- biggest_eigenvalue_cp = eigs_cp [index_cp ]
79
+ # biggest_eigenvalue_cp = eigs_cp[index_cp]
80
80
81
81
biggest_eigenvalue_pm = power_method (matrix )
82
82
biggest_eigenvalue_pm_numba = power_method_numba (matrix .toarray ())
83
- biggest_eigenvalue_pm_cp = power_method_cp (cp_matrix )
83
+ # biggest_eigenvalue_pm_cp = power_method_cp(cp_matrix)
84
84
85
85
assert np .isclose (
86
86
biggest_eigenvalue_np , biggest_eigenvalue_sp , rtol = 1e-4
87
87
) # ensure numpy and scipy implementations are consistent
88
- assert np .isclose (
89
- biggest_eigenvalue_cp , biggest_eigenvalue_sp , rtol = 1e-4
90
- ) # ensure cupy and scipy implementations are consistent
88
+ # assert np.isclose(
89
+ # biggest_eigenvalue_cp, biggest_eigenvalue_sp, rtol=1e-4
90
+ # ) # ensure cupy and scipy implementations are consistent
91
91
assert np .isclose (
92
92
biggest_eigenvalue_pm , biggest_eigenvalue_sp , rtol = 1e-4
93
93
) # ensure power method and scipy implementation are consistent
94
94
assert np .isclose (
95
95
biggest_eigenvalue_pm_numba , biggest_eigenvalue_sp , rtol = 1e-4
96
96
) # ensure numba power method and scipy implementation are consistent
97
- assert np .isclose (
98
- biggest_eigenvalue_pm_cp , biggest_eigenvalue_sp , rtol = 1e-4
99
- ) # ensure cupy power method and scipy implementation are consistent
97
+ # assert np.isclose(
98
+ # biggest_eigenvalue_pm_cp, biggest_eigenvalue_sp, rtol=1e-4
99
+ # ) # ensure cupy power method and scipy implementation are consistent
0 commit comments