|
6 | 6 | #include <array>
|
7 | 7 | #include <iomanip>
|
8 | 8 | #include <chrono>
|
| 9 | +#include <future> |
| 10 | +#include <algorithm> |
| 11 | +#include <numeric> |
| 12 | + |
| 13 | +std::vector<std::vector<double>> |
| 14 | +GivensProduct(const std::vector<std::array<double, 2>>& Matrix_trigonometric, |
| 15 | + unsigned int start, |
| 16 | + unsigned int end, |
| 17 | + unsigned int n) |
| 18 | +{ |
| 19 | + // Create identity matrix Q of size n x n. |
| 20 | + std::vector<std::vector<double>> Q(n, std::vector<double>(n, 0.0)); |
| 21 | + for (unsigned int row = 0; row < n; ++row) { |
| 22 | + Q[row][row] = 1.0; |
| 23 | + } |
| 24 | + |
| 25 | + // For each rotation from start to end-1, update columns i and i+1. |
| 26 | + for (unsigned int i = start; i < end; ++i) |
| 27 | + { |
| 28 | + double c = Matrix_trigonometric[i][0]; |
| 29 | + double s = Matrix_trigonometric[i][1]; |
| 30 | + |
| 31 | + // Rotate columns i and i+1 in Q (parallelizing over rows) |
| 32 | + #pragma omp parallel for |
| 33 | + for (int row = start; row < i+2; ++row) |
| 34 | + { |
| 35 | + double tmp = Q[row][i]; |
| 36 | + Q[row][i] = c * tmp - s * Q[row][i + 1]; |
| 37 | + Q[row][i+1] = s * tmp + c * Q[row][i + 1]; |
| 38 | + } |
| 39 | + } |
| 40 | + return Q; |
| 41 | +} |
| 42 | + |
| 43 | +void operator/=(std::vector<double> & x, const double scale_factor){ |
| 44 | + std::for_each(x.begin(), x.end(), [scale_factor](double element){return element/scale_factor;}); |
| 45 | +} |
| 46 | +std::vector<double> operator/(const std::vector<double> & x, const double scale_factor){ |
| 47 | + std::vector<double> z; |
| 48 | + std::transform(x.cbegin(), x.cend(), std::front_inserter(z), [scale_factor](double element){return element/scale_factor;}); |
| 49 | + return z; |
| 50 | +} |
| 51 | +std::vector<double> operator*(std::vector<double> & x, const double scale_factor){ |
| 52 | + std::for_each(x.begin(), x.end(), [scale_factor](double element){return element*scale_factor;}); |
| 53 | + return x; |
| 54 | +} |
| 55 | + |
| 56 | +double norm_2(std::vector<double> & x){ |
| 57 | + double sum=std::accumulate(x.begin(), x.end(), 0, [](double a, double b) { return a + b*b; }); |
| 58 | + return std::sqrt(sum); |
| 59 | +} |
| 60 | +void operator-=(std::vector<double> & x, const std::vector<double>& y){ |
| 61 | + std::transform(x.begin(), x.end(), y.begin(), x.begin(), std::minus<double>()); |
| 62 | +} |
| 63 | +std::vector<double> operator-(std::vector<double> & x, const std::vector<double>& y){ |
| 64 | + std::vector<double> z; |
| 65 | + std::transform(x.begin(), x.end(), y.begin(), std::front_inserter(z), std::minus<double>()); |
| 66 | + return z; |
| 67 | +} |
| 68 | +std::vector<double> operator*(const std::vector<std::vector<double>> & A, const std::vector<double> & b){ |
| 69 | + std::vector<double> x(A.size(), 0); |
| 70 | + |
| 71 | + // Parallelize this loop |
| 72 | + for(unsigned int i=0; i<A.size(); ++i){ |
| 73 | + x[i]=std::inner_product(A[i].begin(), A[i].end(), b.begin(), 0); |
| 74 | + } |
| 75 | + return x; |
| 76 | +} |
| 77 | + |
| 78 | +double operator*(const std::vector<double> & x, const std::vector<double> & y){ |
| 79 | + |
| 80 | + return std::inner_product(x.cbegin(), x.cend(), y.cbegin(), 0); |
| 81 | + |
| 82 | +} |
| 83 | + |
| 84 | +void Lanczos_PRO(std::vector<std::vector<double>> A, std::vector<double> q, const unsigned int m, const double toll=1e-6){ |
| 85 | + |
| 86 | + q/=norm_2(q); |
| 87 | + std::vector<std::vector<double>> Q{q}; |
| 88 | + |
| 89 | + std::vector<double> r=A*q; |
| 90 | + |
| 91 | + std::vector<double> alpha, beta; |
| 92 | + |
| 93 | + alpha.push_back(q*r); |
| 94 | + r=r-q*alpha[0]; |
| 95 | + |
| 96 | + beta.push_back(norm_2(r)); |
| 97 | + std::vector<double> res; |
| 98 | + |
| 99 | + for (unsigned int j = 1; j < m; j++) |
| 100 | + { |
| 101 | + q= r/beta[j-1]; |
| 102 | + res= Q*q; |
| 103 | + |
| 104 | + for(auto const ele: res){ |
| 105 | + if(std::abs(ele)>toll){ |
| 106 | + |
| 107 | + for(unsigned int i=0;i<Q.size(); ++i){ |
| 108 | + double h=(q*Q[i]); |
| 109 | + q=q-Q[i]*h; |
| 110 | + } |
| 111 | + break; |
| 112 | + } |
| 113 | + } |
| 114 | + q/=norm_2(q); |
| 115 | + Q.push_back(q); |
| 116 | + r=A*q-(Q[j-1]*beta[j-1]); |
| 117 | + alpha.push_back(q * r); |
| 118 | + r = r - q *alpha[j]; |
| 119 | + beta.push_back(norm_2(r)); |
| 120 | + |
| 121 | + if (std::abs(beta[j]) < 1e-15){ |
| 122 | + |
| 123 | + } |
| 124 | + |
| 125 | + return Q, alpha, beta[:-1] |
| 126 | + |
| 127 | + |
| 128 | + } |
| 129 | + |
| 130 | + |
| 131 | + |
| 132 | +} |
9 | 133 |
|
10 | 134 |
|
11 | 135 | //std::pair<std::vector<double>, std::vector<std::vector<double>> >
|
@@ -122,14 +246,31 @@ void QR_algorithm(std::vector<double> diag, std::vector<double> off_diag, cons
|
122 | 246 |
|
123 | 247 | }
|
124 | 248 |
|
| 249 | + |
| 250 | + |
| 251 | + |
125 | 252 | //Uncomment to compute the eigenvalue
|
126 |
| - // for(unsigned int i=0; i<n-1; i++){ |
127 |
| - // for(unsigned j=0; j<n;j++){ |
128 |
| - // tmp=Q[j][i]; |
129 |
| - // Q[j][i]=tmp*Matrix_trigonometric[i][0]-Q[j][i+1]*Matrix_trigonometric[i][1]; |
130 |
| - // Q[j][i+1]=tmp*Matrix_trigonometric[i][1]+Q[j][i+1]*Matrix_trigonometric[i][0]; |
131 |
| - // } |
132 |
| - // } |
| 253 | + for(unsigned int i=0; i<n-1; i++){ |
| 254 | + for(unsigned j=0; j<n;j++){ |
| 255 | + tmp=Q[j][i]; |
| 256 | + Q[j][i]=tmp*Matrix_trigonometric[i][0]-Q[j][i+1]*Matrix_trigonometric[i][1]; |
| 257 | + Q[j][i+1]=tmp*Matrix_trigonometric[i][1]+Q[j][i+1]*Matrix_trigonometric[i][0]; |
| 258 | + } |
| 259 | + } |
| 260 | + |
| 261 | + |
| 262 | + unsigned int n_processor, delta_i=n/n_processor; |
| 263 | + std::future<std::vector<std::vector<double>>> future1 = std::async(std::launch::async, GivensProduct, Matrix_trigonometric, 0, 250 - 1, 500); |
| 264 | + std::future<std::vector<std::vector<double>>> future2 = std::async(std::launch::async, GivensProduct, Matrix_trigonometric, 250, 500 - 1 ,500); |
| 265 | + |
| 266 | + std::vector< std::future<std::vector<std::vector<double>>> > vector_thread; |
| 267 | + std::vector <unsigned int> index; |
| 268 | + for(unsigned int i=0;i<n_processor;i++){ |
| 269 | + index.push_back(i*delta_i); |
| 270 | + } |
| 271 | + |
| 272 | + index.push_back(n-1); |
| 273 | + |
133 | 274 | iter++;
|
134 | 275 | if ( std::abs(off_diag[m-1]) < toll*( std::abs(diag[m]) + std::abs(diag[m-1]) ) )
|
135 | 276 | {
|
|
0 commit comments