@@ -37,7 +37,7 @@ def _callback(*args):
37
37
38
38
Parameters
39
39
----------
40
- parameters : np. ndarray
40
+ parameters : : ndarray
41
41
Parameter value (not used by function)
42
42
43
43
Notes
@@ -60,9 +60,9 @@ def constraint(a, b):
60
60
61
61
Parameters
62
62
----------
63
- a : np. ndarray
63
+ a : ndarray
64
64
Parameter loadings
65
- b : np. ndarray
65
+ b : ndarray
66
66
Constraint bounds
67
67
68
68
Returns
@@ -113,7 +113,7 @@ def implicit_constant(x):
113
113
114
114
Parameters
115
115
----------
116
- x : np. ndarray
116
+ x : ndarray
117
117
Array to be tested
118
118
119
119
Returns
@@ -178,9 +178,9 @@ def constraints(self):
178
178
179
179
Returns
180
180
-------
181
- a : np. ndarray
181
+ a : ndarray
182
182
Number of constraints by number of parameters loading array
183
- b : np. ndarray
183
+ b : ndarray
184
184
Number of constraints array of lower bounds
185
185
186
186
Notes
@@ -387,7 +387,7 @@ def fit(self, update_freq=1, disp='final', starting_values=None,
387
387
disp : str
388
388
Either 'final' to print optimization result or 'off' to display
389
389
nothing
390
- starting_values : np. ndarray, optional
390
+ starting_values : ndarray, optional
391
391
Array of starting values to use. If not provided, starting values
392
392
are constructed by the model components.
393
393
cov_type : str, optional
@@ -572,7 +572,7 @@ def starting_values(self):
572
572
573
573
Returns
574
574
-------
575
- sv : np. ndarray
575
+ sv : ndarray
576
576
Starting values
577
577
"""
578
578
params = np .asarray (self ._fit_no_arch_normal_errors ().params )
@@ -599,16 +599,16 @@ def resids(self, params, y=None, regressors=None):
599
599
600
600
Parameters
601
601
----------
602
- params : np. ndarray
602
+ params : ndarray
603
603
Model parameters
604
- y : np. ndarray, optional
604
+ y : ndarray, optional
605
605
Alternative values to use when computing model residuals
606
- regressors : np. ndarray, optional
606
+ regressors : ndarray, optional
607
607
Alternative regressor values to use when computing model residuals
608
608
609
609
Returns
610
610
-------
611
- resids : np. ndarray
611
+ resids : ndarray
612
612
Model residuals
613
613
"""
614
614
raise NotImplementedError ('Subclasses must implement' )
@@ -619,7 +619,7 @@ def compute_param_cov(self, params, backcast=None, robust=True):
619
619
620
620
Parameters
621
621
----------
622
- params : np. ndarray
622
+ params : ndarray
623
623
Model parameters
624
624
backcast : float
625
625
Value to use for pre-sample observations
@@ -660,7 +660,7 @@ def forecast(self, params, horizon=1, start=None, align='origin', method='analyt
660
660
661
661
Parameters
662
662
----------
663
- params : np. ndarray, optional
663
+ params : ndarray, optional
664
664
Alternative parameters to use. If not provided, the parameters
665
665
estimated when fitting the model are used. Must be identical in
666
666
shape to the parameters computed by fitting the model.
@@ -751,12 +751,12 @@ class ARCHModelFixedResult(_SummaryRepr):
751
751
752
752
Parameters
753
753
----------
754
- params : np. ndarray
754
+ params : ndarray
755
755
Estimated parameters
756
- resid : np. ndarray
756
+ resid : ndarray
757
757
Residuals from model. Residuals have same shape as original data and
758
758
contain nan-values in locations not used in estimation
759
- volatility : np. ndarray
759
+ volatility : ndarray
760
760
Conditional volatility from model
761
761
dep_var: Series
762
762
Dependent variable
@@ -786,7 +786,7 @@ class ARCHModelFixedResult(_SummaryRepr):
786
786
Akaike information criteria
787
787
bic : float
788
788
Schwarz/Bayes information criteria
789
- conditional_volatility : {np. ndarray, Series}
789
+ conditional_volatility : {ndarray, Series}
790
790
nobs element array containing the conditional volatility (square root
791
791
of conditional variance). The values are aligned with the input data
792
792
so that the value in the t-th position is the variance of t-th error,
@@ -797,7 +797,7 @@ class ARCHModelFixedResult(_SummaryRepr):
797
797
Number of observations used in the estimation
798
798
num_params : int
799
799
Number of parameters in the model
800
- resid : {np. ndarray, Series}
800
+ resid : {ndarray, Series}
801
801
nobs element array containing model residuals
802
802
model : ARCHModel
803
803
Model instance used to produce the fit
@@ -1056,7 +1056,7 @@ def forecast(self, params=None, horizon=1, start=None, align='origin', method='a
1056
1056
1057
1057
Parameters
1058
1058
----------
1059
- params : np. ndarray, optional
1059
+ params : ndarray, optional
1060
1060
Alternative parameters to use. If not provided, the parameters
1061
1061
estimated when fitting the model are used. Must be identical in
1062
1062
shape to the parameters computed by fitting the model.
@@ -1126,7 +1126,7 @@ def hedgehog_plot(self, params=None, horizon=10, step=10, start=None,
1126
1126
1127
1127
Parameters
1128
1128
----------
1129
- params : {np. ndarray, Series}
1129
+ params : {ndarray, Series}
1130
1130
Alternative parameters to use. If not provided, the parameters
1131
1131
computed by fitting the model are used. Must be 1-d and identical
1132
1132
in shape to the parameters computed by fitting the model.
@@ -1225,18 +1225,18 @@ class ARCHModelResult(ARCHModelFixedResult):
1225
1225
1226
1226
Parameters
1227
1227
----------
1228
- params : np. ndarray
1228
+ params : ndarray
1229
1229
Estimated parameters
1230
- param_cov : {np. ndarray, None}
1230
+ param_cov : {ndarray, None}
1231
1231
Estimated variance-covariance matrix of params. If none, calls method
1232
1232
to compute variance from model when parameter covariance is first used
1233
1233
from result
1234
1234
r2 : float
1235
1235
Model R-squared
1236
- resid : np. ndarray
1236
+ resid : ndarray
1237
1237
Residuals from model. Residuals have same shape as original data and
1238
1238
contain nan-values in locations not used in estimation
1239
- volatility : np. ndarray
1239
+ volatility : ndarray
1240
1240
Conditional volatility from model
1241
1241
cov_type : str
1242
1242
String describing the covariance estimator used
@@ -1273,7 +1273,7 @@ class ARCHModelResult(ARCHModelFixedResult):
1273
1273
Akaike information criteria
1274
1274
bic : float
1275
1275
Schwarz/Bayes information criteria
1276
- conditional_volatility : {np. ndarray, Series}
1276
+ conditional_volatility : {ndarray, Series}
1277
1277
nobs element array containing the conditional volatility (square root
1278
1278
of conditional variance). The values are aligned with the input data
1279
1279
so that the value in the t-th position is the variance of t-th error,
@@ -1296,7 +1296,7 @@ class ARCHModelResult(ARCHModelFixedResult):
1296
1296
Array of parameter standard errors
1297
1297
pvalues : Series
1298
1298
Array of p-values for the t-statistics
1299
- resid : {np. ndarray, Series}
1299
+ resid : {ndarray, Series}
1300
1300
nobs element array containing model residuals
1301
1301
model : ARCHModel
1302
1302
Model instance used to produce the fit
@@ -1324,7 +1324,7 @@ def conf_int(self, alpha=0.05):
1324
1324
1325
1325
Returns
1326
1326
-------
1327
- ci : np. ndarray
1327
+ ci : ndarray
1328
1328
Array where the ith row contains the confidence interval for the
1329
1329
ith parameter
1330
1330
"""
@@ -1598,14 +1598,14 @@ class ARCHModelForecast(object):
1598
1598
1599
1599
Parameters
1600
1600
----------
1601
- index : {list, np. ndarray}
1602
- mean : np. ndarray
1603
- variance : np. ndarray
1604
- residual_variance : np. ndarray
1605
- simulated_paths : np. ndarray, optional
1606
- simulated_variances : np. ndarray, optional
1607
- simulated_residual_variances : np. ndarray, optional
1608
- simulated_residuals : np. ndarray, optional
1601
+ index : {list, ndarray}
1602
+ mean : ndarray
1603
+ variance : ndarray
1604
+ residual_variance : ndarray
1605
+ simulated_paths : ndarray, optional
1606
+ simulated_variances : ndarray, optional
1607
+ simulated_residual_variances : ndarray, optional
1608
+ simulated_residuals : ndarray, optional
1609
1609
align : {'origin', 'target'}
1610
1610
1611
1611
Attributes
0 commit comments