Skip to content

SDEs with non-diagonal noise cause EnsembleGPU/CPUArray to throw an error #331

@henhen724

Description

@henhen724

Describe the bug 🐞

  • If EnsembleCPUArray or EnsembleGPUArray is provided with an SDE with non-diagonal noise and an in place noise function, then it crashes because the du array provided to the noise function does not match the dimensions of the noise_rate_prototype.
  • This error happens regardless of the choice of SDE algorithm.
  • If an out of place function is used for the noise process instead of an in place function, no error is thrown, but the noise process is not correctly applied. Specifically, the matrix returned for du has its first column interpreted as a diagonal noise vector.
  • If you don't specify any SDE algorithm, it will return the correct solution, but this because of a different bug which causes the solve function to ignore the EnsembleCPU/GPUArray() option when a SDE algorithm is not specified.

Expected behavior
The expected behavior is for the solver to finish without throwing an error and return an accurate solution.

Minimal Reproducible Example 👇

using DifferentialEquations, DiffEqGPU, SparseArrays

function lorenz(du, u, p, t)
    du[1] = p[1] * (u[2] - u[1])
    du[2] = u[1] * (p[2] - u[3]) - u[2]
    du[3] = u[1] * u[2] - p[3] * u[3]
    du[4] = 0
end

function multiplicative_noise(du, u, p, t)
    du[1, 1] = 0.1
    du[2, 2] = 0.4
    du[4, 1] = 1.0
end

NRate = spzeros(4, 2)
NRate[1, 1] = 1
NRate[4, 1] = 1
NRate[2, 2] = 1

u0 = ComplexF32[1.0; 0.0; 0.0; 0.0]
tspan = (0.0f0, 10.0f0)
p = (10.0f0, 28.0f0, 8 / 3.0f0)
prob = SDEProblem(lorenz, multiplicative_noise, u0, tspan, p, noise_rate_prototype=NRate)

prob_func = (prob, i, repeat) -> remake(prob, p=p)
monteprob = EnsembleProblem(prob, prob_func=prob_func)

sol = solve(monteprob, SRA1(), EnsembleCPUArray(), trajectories=10_000, saveat=1.0f0)

Error & Stacktrace ⚠️

ERROR: LoadError: BoundsError: attempt to access 4-element view(::Matrix{ComplexF32}, :, 1) with eltype ComplexF32 at index [2, 2]
Stacktrace:
  [1] throw_boundserror(A::SubArray{ComplexF32, 1, Matrix{ComplexF32}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true}, I::Tuple{Int64, Int64})
    @ Base .\abstractarray.jl:737
  [2] checkbounds
    @ .\abstractarray.jl:702 [inlined]
  [3] _setindex!
    @ .\abstractarray.jl:1418 [inlined]
  [4] setindex!
    @ .\abstractarray.jl:1396 [inlined]
  [5] multiplicative_noise
    @ Z:\Users\hshunt\LabNotebooks\DickeModel\ArraySolveTesting.jl:13 [inlined]
  [6] macro expansion
    @ C:\Users\henhen724\.julia\packages\DiffEqGPU\I999k\src\ensemblegpuarray\kernels.jl:45 [inlined]
  [7] cpu_gpu_kernel
    @ C:\Users\henhen724\.julia\packages\KernelAbstractions\MAxUm\src\macros.jl:287 [inlined]
  [8] cpu_gpu_kernel(__ctx__::KernelAbstractions.CompilerMetadata{KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicCheck, CartesianIndex{1}, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}, KernelAbstractions.NDIteration.NDRange{1, KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicSize, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}}}, f::typeof(multiplicative_noise), du::Matrix{ComplexF32}, u::Matrix{ComplexF32}, p::Matrix{Tuple{Float32, Float32, Float32}}, t::Float32)
    @ DiffEqGPU .\none:0
  [9] __thread_run(tid::Int64, len::Int64, rem::Int64, obj::KernelAbstractions.Kernel{KernelAbstractions.CPU, KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicSize, typeof(DiffEqGPU.cpu_gpu_kernel)}, ndrange::Tuple{Int64}, iterspace::KernelAbstractions.NDIteration.NDRange{1, KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicSize, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}}, args::Tuple{typeof(multiplicative_noise), Matrix{ComplexF32}, Matrix{ComplexF32}, Matrix{Tuple{Float32, Float32, Float32}}, Float32}, dynamic::KernelAbstractions.NDIteration.DynamicCheck)
    @ KernelAbstractions C:\Users\henhen724\.julia\packages\KernelAbstractions\MAxUm\src\cpu.jl:117
 [10] __run(obj::KernelAbstractions.Kernel{KernelAbstractions.CPU, KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicSize, typeof(DiffEqGPU.cpu_gpu_kernel)}, ndrange::Tuple{Int64}, iterspace::KernelAbstractions.NDIteration.NDRange{1, KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicSize, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}}, args::Tuple{typeof(multiplicative_noise), Matrix{ComplexF32}, Matrix{ComplexF32}, Matrix{Tuple{Float32, Float32, Float32}}, Float32}, dynamic::KernelAbstractions.NDIteration.DynamicCheck, static_threads::Bool)
    @ KernelAbstractions C:\Users\henhen724\.julia\packages\KernelAbstractions\MAxUm\src\cpu.jl:84
 [11] (::KernelAbstractions.Kernel{KernelAbstractions.CPU, KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicSize, typeof(DiffEqGPU.cpu_gpu_kernel)})(::Function, ::Vararg{Any}; ndrange::Int64, workgroupsize::Int64)
    @ KernelAbstractions C:\Users\henhen724\.julia\packages\KernelAbstractions\MAxUm\src\cpu.jl:46
 [12] Kernel
    @ C:\Users\henhen724\.julia\packages\KernelAbstractions\MAxUm\src\cpu.jl:39 [inlined]
 [13] #21
    @ C:\Users\henhen724\.julia\packages\DiffEqGPU\I999k\src\ensemblegpuarray\problem_generation.jl:85 [inlined]       
 [14] sde_determine_initdt(u0::Matrix{ComplexF32}, t::Float32, tdir::Float32, dtmax::Float32, abstol::Float32, reltol::Float32, internalnorm::typeof(DiffEqGPU.diffeqgpunorm), prob::SDEProblem{Matrix{ComplexF32}, Tuple{Float32, Float32}, true, Matrix{Tuple{Float32, Float32, Float32}}, Nothing, SDEFunction{true, SciMLBase.FullSpecialize, DiffEqGPU.var"#20#25"{typeof(lorenz), typeof(DiffEqGPU.gpu_kernel)}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, @Kwargs{}, Nothing}, order::Rational{Int64}, integrator::StochasticDiffEq.SDEIntegrator{SRA1, true, Matrix{ComplexF32}, ComplexF32, Float32, Float32, Matrix{Tuple{Float32, Float32, Float32}}, Float32, Float32, ComplexF32, NoiseProcess{ComplexF32, 3, Float32, Matrix{ComplexF32}, Matrix{ComplexF32}, Vector{Matrix{ComplexF32}}, typeof(DiffEqNoiseProcess.INPLACE_WHITE_NOISE_DIST), typeof(DiffEqNoiseProcess.INPLACE_WHITE_NOISE_BRIDGE), Nothing, true, ResettableStacks.ResettableStack{Tuple{Float32, Matrix{ComplexF32}, Matrix{ComplexF32}}, true}, 
ResettableStacks.ResettableStack{Tuple{Float32, Matrix{ComplexF32}, Matrix{ComplexF32}}, true}, RSWM{Float64}, Nothing, RandomNumbers.Xorshifts.Xoroshiro128Plus}, Nothing, Matrix{ComplexF32}, RODESolution{ComplexF32, 3, Vector{Matrix{ComplexF32}}, Nothing, Nothing, Vector{Float32}, NoiseProcess{ComplexF32, 3, Float32, Matrix{ComplexF32}, Matrix{ComplexF32}, Vector{Matrix{ComplexF32}}, typeof(DiffEqNoiseProcess.INPLACE_WHITE_NOISE_DIST), typeof(DiffEqNoiseProcess.INPLACE_WHITE_NOISE_BRIDGE), Nothing, true, ResettableStacks.ResettableStack{Tuple{Float32, Matrix{ComplexF32}, Matrix{ComplexF32}}, true}, ResettableStacks.ResettableStack{Tuple{Float32, Matrix{ComplexF32}, Matrix{ComplexF32}}, true}, RSWM{Float64}, Nothing, RandomNumbers.Xorshifts.Xoroshiro128Plus}, SDEProblem{Matrix{ComplexF32}, Tuple{Float32, Float32}, true, Matrix{Tuple{Float32, Float32, Float32}}, Nothing, SDEFunction{true, SciMLBase.FullSpecialize, DiffEqGPU.var"#20#25"{typeof(lorenz), typeof(DiffEqGPU.gpu_kernel)}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, @Kwargs{}, Nothing}, SRA1, StochasticDiffEq.LinearInterpolationData{Vector{Matrix{ComplexF32}}, Vector{Float32}}, SciMLBase.DEStats, Nothing}, StochasticDiffEq.SRA1Cache{Matrix{ComplexF32}, Matrix{ComplexF32}, Matrix{ComplexF32}, Matrix{ComplexF32}}, SDEFunction{true, SciMLBase.FullSpecialize, DiffEqGPU.var"#20#25"{typeof(lorenz), typeof(DiffEqGPU.gpu_kernel)}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, Nothing, StochasticDiffEq.SDEOptions{Float32, Float32, PIController{Float32}, typeof(DiffEqGPU.diffeqgpunorm), Nothing, CallbackSet{Tuple{}, Tuple{}}, typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), DiffEqGPU.var"#114#120", DataStructures.BinaryHeap{Float32, DataStructures.FasterForward}, DataStructures.BinaryHeap{Float32, DataStructures.FasterForward}, Nothing, Nothing, Int64, Float32, Float32, ComplexF32, Tuple{}, Float32, Tuple{}}, Nothing, ComplexF32, Nothing, Nothing})
    @ StochasticDiffEq C:\Users\henhen724\.julia\packages\StochasticDiffEq\PgPd0\src\initdt.jl:34
 [15] auto_dt_reset!
    @ C:\Users\henhen724\.julia\packages\StochasticDiffEq\PgPd0\src\integrators\integrator_interface.jl:355 [inlined]  
 [16] handle_dt!(integrator::StochasticDiffEq.SDEIntegrator{SRA1, true, Matrix{ComplexF32}, ComplexF32, Float32, Float32, Matrix{Tuple{Float32, Float32, Float32}}, Float32, Float32, ComplexF32, NoiseProcess{ComplexF32, 3, Float32, Matrix{ComplexF32}, Matrix{ComplexF32}, Vector{Matrix{ComplexF32}}, typeof(DiffEqNoiseProcess.INPLACE_WHITE_NOISE_DIST), typeof(DiffEqNoiseProcess.INPLACE_WHITE_NOISE_BRIDGE), Nothing, true, ResettableStacks.ResettableStack{Tuple{Float32, Matrix{ComplexF32}, Matrix{ComplexF32}}, true}, ResettableStacks.ResettableStack{Tuple{Float32, Matrix{ComplexF32}, Matrix{ComplexF32}}, true}, RSWM{Float64}, Nothing, RandomNumbers.Xorshifts.Xoroshiro128Plus}, Nothing, Matrix{ComplexF32}, RODESolution{ComplexF32, 3, Vector{Matrix{ComplexF32}}, Nothing, Nothing, Vector{Float32}, NoiseProcess{ComplexF32, 3, Float32, Matrix{ComplexF32}, Matrix{ComplexF32}, Vector{Matrix{ComplexF32}}, typeof(DiffEqNoiseProcess.INPLACE_WHITE_NOISE_DIST), typeof(DiffEqNoiseProcess.INPLACE_WHITE_NOISE_BRIDGE), Nothing, true, ResettableStacks.ResettableStack{Tuple{Float32, Matrix{ComplexF32}, Matrix{ComplexF32}}, true}, ResettableStacks.ResettableStack{Tuple{Float32, Matrix{ComplexF32}, Matrix{ComplexF32}}, true}, RSWM{Float64}, Nothing, RandomNumbers.Xorshifts.Xoroshiro128Plus}, SDEProblem{Matrix{ComplexF32}, Tuple{Float32, Float32}, true, Matrix{Tuple{Float32, Float32, Float32}}, Nothing, SDEFunction{true, SciMLBase.FullSpecialize, DiffEqGPU.var"#20#25"{typeof(lorenz), typeof(DiffEqGPU.gpu_kernel)}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, @Kwargs{}, Nothing}, SRA1, StochasticDiffEq.LinearInterpolationData{Vector{Matrix{ComplexF32}}, Vector{Float32}}, SciMLBase.DEStats, Nothing}, StochasticDiffEq.SRA1Cache{Matrix{ComplexF32}, Matrix{ComplexF32}, Matrix{ComplexF32}, Matrix{ComplexF32}}, SDEFunction{true, SciMLBase.FullSpecialize, DiffEqGPU.var"#20#25"{typeof(lorenz), typeof(DiffEqGPU.gpu_kernel)}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, 
Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, Nothing, StochasticDiffEq.SDEOptions{Float32, Float32, PIController{Float32}, typeof(DiffEqGPU.diffeqgpunorm), Nothing, CallbackSet{Tuple{}, Tuple{}}, typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), DiffEqGPU.var"#114#120", DataStructures.BinaryHeap{Float32, DataStructures.FasterForward}, DataStructures.BinaryHeap{Float32, DataStructures.FasterForward}, Nothing, Nothing, Int64, Float32, Float32, ComplexF32, Tuple{}, Float32, Tuple{}}, Nothing, ComplexF32, Nothing, Nothing})
    @ StochasticDiffEq C:\Users\henhen724\.julia\packages\StochasticDiffEq\PgPd0\src\solve.jl:643
 [17] __init(_prob::SDEProblem{Matrix{ComplexF32}, Tuple{Float32, Float32}, true, Matrix{Tuple{Float32, Float32, Float32}}, Nothing, SDEFunction{true, SciMLBase.FullSpecialize, DiffEqGPU.var"#20#25"{typeof(lorenz), typeof(DiffEqGPU.gpu_kernel)}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, @Kwargs{}, Nothing}, alg::SRA1, timeseries_init::Vector{Any}, ts_init::Vector{Any}, ks_init::Type, recompile::Type{Val{true}}; saveat::Float32, tstops::Tuple{}, d_discontinuities::Tuple{}, save_idxs::Nothing, save_everystep::Bool, 
save_noise::Bool, save_on::Bool, save_start::Bool, save_end::Nothing, callback::Nothing, dense::Bool, calck::Bool, dt::Float32, adaptive::Bool, gamma::Rational{Int64}, abstol::Nothing, reltol::Nothing, qmin::Rational{Int64}, qmax::Rational{Int64}, qsteady_min::Int64, qsteady_max::Int64, beta2::Nothing, beta1::Nothing, qoldinit::Rational{Int64}, controller::Nothing, fullnormalize::Bool, failfactor::Int64, delta::Rational{Int64}, maxiters::Int64, dtmax::Float32, dtmin::Float32, internalnorm::typeof(DiffEqGPU.diffeqgpunorm), isoutofdomain::typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), unstable_check::DiffEqGPU.var"#114#120", verbose::Bool, force_dtmin::Bool, timeseries_errors::Bool, dense_errors::Bool, advance_to_tstop::Bool, stop_at_next_tstop::Bool, initialize_save::Bool, progress::Bool, progress_steps::Int64, progress_name::String, progress_message::typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), progress_id::Symbol, userdata::Nothing, initialize_integrator::Bool, seed::UInt64, alias_u0::Bool, alias_jumps::Bool, kwargs::@Kwargs{})
    @ StochasticDiffEq C:\Users\henhen724\.julia\packages\StochasticDiffEq\PgPd0\src\solve.jl:596
 [18] __init (repeats 2 times)
    @ C:\Users\henhen724\.julia\packages\StochasticDiffEq\PgPd0\src\solve.jl:18 [inlined]
 [19] #__solve#107
    @ C:\Users\henhen724\.julia\packages\StochasticDiffEq\PgPd0\src\solve.jl:6 [inlined]
 [20] __solve (repeats 4 times)
    @ C:\Users\henhen724\.julia\packages\StochasticDiffEq\PgPd0\src\solve.jl:1 [inlined]
 [21] solve_call(_prob::SDEProblem{Matrix{ComplexF32}, Tuple{Float32, Float32}, true, Matrix{Tuple{Float32, Float32, Float32}}, Nothing, SDEFunction{true, SciMLBase.FullSpecialize, DiffEqGPU.var"#20#25"{typeof(lorenz), typeof(DiffEqGPU.gpu_kernel)}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, DiffEqGPU.var"#21#26"{typeof(multiplicative_noise), typeof(DiffEqGPU.gpu_kernel)}, @Kwargs{}, Nothing}, args::SRA1; merge_callbacks::Bool, kwargshandle::Nothing, kwargs::@Kwargs{adaptive::Bool, unstable_check::DiffEqGPU.var"#114#120", saveat::Float32, callback::Nothing, internalnorm::typeof(DiffEqGPU.diffeqgpunorm)})
    @ DiffEqBase C:\Users\henhen724\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:612
 [22] solve_call
    @ C:\Users\henhen724\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:569 [inlined]
 [23] #solve_up#53
    @ C:\Users\henhen724\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:1080 [inlined]
 [24] solve_up
    @ C:\Users\henhen724\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:1066 [inlined]
 [25] #solve#51
    @ C:\Users\henhen724\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:1003 [inlined]
 [26] batch_solve_up(ensembleprob::EnsembleProblem{SDEProblem{Vector{ComplexF32}, Tuple{Float32, Float32}, true, Tuple{Float32, Float32, Float32}, Nothing, SDEFunction{true, SciMLBase.FullSpecialize, typeof(lorenz), typeof(multiplicative_noise), LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, typeof(multiplicative_noise), @Kwargs{}, SparseMatrixCSC{Float64, Int64}}, var"#3#4", typeof(SciMLBase.DEFAULT_OUTPUT_FUNC), typeof(SciMLBase.DEFAULT_REDUCTION), Nothing}, probs::Vector{SDEProblem{Vector{ComplexF32}, Tuple{Float32, Float32}, true, Tuple{Float32, Float32, Float32}, Nothing, SDEFunction{true, SciMLBase.FullSpecialize, typeof(lorenz), typeof(multiplicative_noise), LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, 
typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, typeof(multiplicative_noise), @Kwargs{}, SparseMatrixCSC{Float64, Int64}}}, alg::SRA1, ensemblealg::EnsembleCPUArray, I::UnitRange{Int64}, u0::Matrix{ComplexF32}, p::Matrix{Tuple{Float32, Float32, Float32}}; kwargs::@Kwargs{adaptive::Bool, unstable_check::DiffEqGPU.var"#114#120", saveat::Float32})    
    @ DiffEqGPU C:\Users\henhen724\.julia\packages\DiffEqGPU\I999k\src\solve.jl:315
 [27] batch_solve(ensembleprob::EnsembleProblem{SDEProblem{Vector{ComplexF32}, Tuple{Float32, Float32}, true, Tuple{Float32, Float32, Float32}, Nothing, SDEFunction{true, SciMLBase.FullSpecialize, typeof(lorenz), typeof(multiplicative_noise), LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, typeof(multiplicative_noise), @Kwargs{}, SparseMatrixCSC{Float64, Int64}}, var"#3#4", typeof(SciMLBase.DEFAULT_OUTPUT_FUNC), typeof(SciMLBase.DEFAULT_REDUCTION), 
Nothing}, alg::SRA1, ensemblealg::EnsembleCPUArray, I::UnitRange{Int64}, adaptive::Bool; kwargs::@Kwargs{unstable_check::DiffEqGPU.var"#114#120", saveat::Float32})
    @ DiffEqGPU C:\Users\henhen724\.julia\packages\DiffEqGPU\I999k\src\solve.jl:242
 [28] macro expansion
    @ .\timing.jl:395 [inlined]
 [29] __solve(ensembleprob::EnsembleProblem{SDEProblem{Vector{ComplexF32}, Tuple{Float32, Float32}, true, Tuple{Float32, Float32, Float32}, Nothing, SDEFunction{true, SciMLBase.FullSpecialize, typeof(lorenz), typeof(multiplicative_noise), LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, typeof(multiplicative_noise), @Kwargs{}, SparseMatrixCSC{Float64, Int64}}, var"#3#4", typeof(SciMLBase.DEFAULT_OUTPUT_FUNC), typeof(SciMLBase.DEFAULT_REDUCTION), Nothing}, alg::SRA1, ensemblealg::EnsembleCPUArray; trajectories::Int64, batch_size::Int64, unstable_check::Function, adaptive::Bool, kwargs::@Kwargs{saveat::Float32})
    @ DiffEqGPU C:\Users\henhen724\.julia\packages\DiffEqGPU\I999k\src\solve.jl:55
 [30] __solve
    @ C:\Users\henhen724\.julia\packages\DiffEqGPU\I999k\src\solve.jl:1 [inlined]
 [31] #solve#55
    @ C:\Users\henhen724\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:1096 [inlined]
 [32] top-level scope
    @ Z:\Users\hshunt\LabNotebooks\DickeModel\ArraySolveTesting.jl:32
in expression starting at Z:\Users\hshunt\LabNotebooks\DickeModel\ArraySolveTesting.jl:32

Environment (please complete the following information):

  • Output of using Pkg; Pkg.status()
julia> using Pkg; Pkg.status()
Status `\\levlabserver2.stanford.edu\commondrive\Users\hshunt\LabNotebooks\BugEnv\Project.toml`
  [071ae1c0] DiffEqGPU v3.4.1
  [0c46a032] DifferentialEquations v7.13.0
  [2f01184e] SparseArrays v1.10.0
  • Output of using Pkg; Pkg.status(; mode = PKGMODE_MANIFEST)
julia> using Pkg; Pkg.status(; mode = PKGMODE_MANIFEST)
Status `\\levlabserver2.stanford.edu\commondrive\Users\hshunt\LabNotebooks\BugEnv\Manifest.toml`
  [47edcb42] ADTypes v1.6.1
⌃ [7d9f7c33] Accessors v0.1.36
  [79e6a3ab] Adapt v4.0.4
  [66dad0bd] AliasTables v1.1.3
  [ec485272] ArnoldiMethod v0.4.0
  [4fba245c] ArrayInterface v7.12.0
  [4c555306] ArrayLayouts v1.10.2
  [a9b6321e] Atomix v0.1.0
  [aae01518] BandedMatrices v1.7.2
  [62783981] BitTwiddlingConvenienceFunctions v0.1.6
  [764a87c0] BoundaryValueDiffEq v5.9.0
  [fa961155] CEnum v0.5.0
  [2a0fbf3d] CPUSummary v0.2.6
  [49dc2e85] Calculus v0.5.1
  [d360d2e6] ChainRulesCore v1.24.0
  [fb6a15b2] CloseOpenIntervals v0.1.13
  [38540f10] CommonSolve v0.2.4
  [bbf7d656] CommonSubexpressions v0.3.0
  [f70d9fcc] CommonWorldInvalidations v1.0.0
  [34da2185] Compat v4.15.0
  [a33af91c] CompositionsBase v0.1.2
  [2569d6c7] ConcreteStructs v0.2.3
⌃ [187b0558] ConstructionBase v1.5.5
  [adafc99b] CpuId v0.3.1
  [9a962f9c] DataAPI v1.16.0
  [864edb3b] DataStructures v0.18.20
  [e2d170a0] DataValueInterfaces v1.0.0
  [bcd4f6db] DelayDiffEq v5.47.3
  [2b5f629d] DiffEqBase v6.151.5
  [459566f4] DiffEqCallbacks v3.6.2
  [071ae1c0] DiffEqGPU v3.4.1
  [77a26b50] DiffEqNoiseProcess v5.22.0
  [163ba53b] DiffResults v1.1.0
  [b552c78f] DiffRules v1.15.1
  [0c46a032] DifferentialEquations v7.13.0
  [a0c0ee7d] DifferentiationInterface v0.5.9
  [b4f34e82] Distances v0.10.11
  [31c24e10] Distributions v0.25.109
  [ffbed154] DocStringExtensions v0.9.3
  [fa6b7ba4] DualNumbers v0.6.8
  [4e289a0a] EnumX v1.0.4
  [f151be2c] EnzymeCore v0.7.7
  [d4d017d3] ExponentialUtilities v1.26.1
  [e2ba6199] ExprTools v0.1.10
  [9d29842c] FastAlmostBandedMatrices v0.1.3
⌃ [7034ab61] FastBroadcast v0.3.4
  [9aa1b823] FastClosures v0.3.2
  [29a986be] FastLapackInterface v2.0.4
  [1a297f60] FillArrays v1.11.0
  [6a86dc24] FiniteDiff v2.23.1
  [f6369f11] ForwardDiff v0.10.36
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
  [d9f16b24] Functors v0.4.11
  [46192b85] GPUArraysCore v0.1.6
  [c145ed77] GenericSchur v0.5.4
  [86223c79] Graphs v1.11.2
  [3e5b6fbb] HostCPUFeatures v0.1.17
  [34004b35] HypergeometricFunctions v0.3.23
  [615f187c] IfElse v0.1.1
  [d25df0c9] Inflate v0.1.5
  [3587e190] InverseFunctions v0.1.15
  [92d709cd] IrrationalConstants v0.2.2
  [82899510] IteratorInterfaceExtensions v1.0.0
  [692b3bcd] JLLWrappers v1.5.0
  [ccbc3e58] JumpProcesses v9.11.1
  [ef3ab10e] KLU v0.6.0
  [63c18a36] KernelAbstractions v0.9.22
  [ba0b0d4f] Krylov v0.9.6
  [929cbde3] LLVM v8.0.0
  [10f19ff3] LayoutPointers v0.1.17
  [5078a376] LazyArrays v2.1.9
  [2d8b4e74] LevyArea v1.0.0
  [d3d80556] LineSearches v7.2.0
  [7ed4a6bd] LinearSolve v2.30.2
  [2ab3a3ac] LogExpFunctions v0.3.28
  [bdcacae8] LoopVectorization v0.12.171
  [1914dd2f] MacroTools v0.5.13
  [d125e4d3] ManualMemory v0.1.8
  [a3b82374] MatrixFactorizations v3.0.0
  [bb5d69b7] MaybeInplace v0.1.3
  [e1d29d7a] Missings v1.2.0
  [46d2c3a1] MuladdMacro v0.2.4
  [d41bc354] NLSolversBase v7.8.3
  [2774e3e8] NLsolve v4.5.1
  [77ba4419] NaNMath v1.0.2
  [8913a72c] NonlinearSolve v3.13.1
  [6fe1bfb0] OffsetArrays v1.14.1
  [429524aa] Optim v1.9.4
  [bac558e1] OrderedCollections v1.6.3
  [1dea7af3] OrdinaryDiffEq v6.86.0
  [90014a1f] PDMats v0.11.31
  [65ce6f38] PackageExtensionCompat v1.0.2
  [d96e819e] Parameters v0.12.3
  [e409e4f3] PoissonRandom v0.4.4
  [f517fe37] Polyester v0.7.15
  [1d0040c9] PolyesterWeave v0.2.2
  [85a6dd25] PositiveFactorizations v0.2.4
  [d236fae5] PreallocationTools v0.4.22
  [aea7be01] PrecompileTools v1.2.1
  [21216c6a] Preferences v1.4.3
  [43287f4e] PtrArrays v1.2.0
  [1fd47b50] QuadGK v2.9.4
  [74087812] Random123 v1.7.0
  [e6cf234a] RandomNumbers v1.5.3
  [3cdcf5f2] RecipesBase v1.3.4
  [731186ca] RecursiveArrayTools v3.26.0
  [f2c3362d] RecursiveFactorization v0.2.23
  [189a3867] Reexport v1.2.2
  [ae029012] Requires v1.3.0
  [ae5879a3] ResettableStacks v1.1.1
  [79098fc4] Rmath v0.7.1
  [7e49a35a] RuntimeGeneratedFunctions v0.5.13
  [94e857df] SIMDTypes v0.1.0
  [476501e8] SLEEFPirates v0.6.43
⌃ [0bca4576] SciMLBase v2.43.1
  [c0aeaf25] SciMLOperators v0.3.8
  [53ae85a6] SciMLStructures v1.4.1
  [efcf1570] Setfield v1.1.1
  [05bca326] SimpleDiffEq v1.11.1
⌃ [727e6d20] SimpleNonlinearSolve v1.10.1
  [699a6c99] SimpleTraits v0.9.4
  [ce78b400] SimpleUnPack v1.1.0
  [a2af1166] SortingAlgorithms v1.2.1
  [47a9eef4] SparseDiffTools v2.19.0
  [0a514795] SparseMatrixColorings v0.3.5
  [e56a9233] Sparspak v0.3.9
  [276daf66] SpecialFunctions v2.4.0
  [aedffcd0] Static v1.1.1
  [0d7ed370] StaticArrayInterface v1.5.1
  [90137ffa] StaticArrays v1.9.7
  [1e83bf80] StaticArraysCore v1.4.3
  [82ae8749] StatsAPI v1.7.0
  [2913bbd2] StatsBase v0.34.3
  [4c63d2b9] StatsFuns v1.3.1
  [9672c7b4] SteadyStateDiffEq v2.2.0
  [789caeaf] StochasticDiffEq v6.66.0
  [7792a7ef] StrideArraysCore v0.5.7
  [c3572dad] Sundials v4.24.0
  [2efcf032] SymbolicIndexingInterface v0.3.26
  [3783bdb8] TableTraits v1.0.1
  [bd369af6] Tables v1.12.0
  [8290d209] ThreadingUtilities v0.5.2
  [a759f4b9] TimerOutputs v0.5.24
  [d5829a12] TriangularSolve v0.2.1
  [410a4b4d] Tricks v0.1.8
  [781d530d] TruncatedStacktraces v1.4.0
  [3a884ed6] UnPack v1.0.2
  [013be700] UnsafeAtomics v0.2.1
  [d80eeb9a] UnsafeAtomicsLLVM v0.1.5
  [3d5dd08c] VectorizationBase v0.21.70
  [19fa3120] VertexSafeGraphs v0.2.0
  [700de1a5] ZygoteRules v0.2.5
  [1d5cc7b8] IntelOpenMP_jll v2024.2.0+0
  [dad2f222] LLVMExtra_jll v0.0.30+0
  [856f044c] MKL_jll v2024.2.0+0
  [efe28fd5] OpenSpecFun_jll v0.5.5+0
  [f50d1b31] Rmath_jll v0.4.2+0
⌅ [fb77eaff] Sundials_jll v5.2.2+0
  [1317d2d5] oneTBB_jll v2021.12.0+0
  [0dad84c5] ArgTools v1.1.1
  [56f22d72] Artifacts
  [2a0f44e3] Base64
  [ade2ca70] Dates
  [8ba89e20] Distributed
  [f43a241f] Downloads v1.6.0
  [7b1f6079] FileWatching
  [9fa8497b] Future
  [b77e0a4c] InteractiveUtils
  [4af54fe1] LazyArtifacts
  [b27032c2] LibCURL v0.6.4
  [76f85450] LibGit2
  [8f399da3] Libdl
  [37e2e46d] LinearAlgebra
  [56ddb016] Logging
  [d6f4376e] Markdown
  [a63ad114] Mmap
  [ca575930] NetworkOptions v1.2.0
  [44cfe95a] Pkg v1.10.0
  [de0858da] Printf
  [3fa0cd96] REPL
  [9a3f8284] Random
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization
  [1a1011a3] SharedArrays
  [6462fe0b] Sockets
  [2f01184e] SparseArrays v1.10.0
  [10745b16] Statistics v1.10.0
  [4607b0f0] SuiteSparse
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [8dfed614] Test
  [cf7118a7] UUIDs
  [4ec0a83e] Unicode
  [e66e0078] CompilerSupportLibraries_jll v1.1.0+0
  [deac9b47] LibCURL_jll v8.4.0+0
  [e37daf67] LibGit2_jll v1.6.4+0
  [29816b5a] LibSSH2_jll v1.11.0+1
  [c8ffd9c3] MbedTLS_jll v2.28.2+1
  [14a3606d] MozillaCACerts_jll v2023.1.10
  [4536629a] OpenBLAS_jll v0.3.23+4
  [05823500] OpenLibm_jll v0.8.1+2
  [bea87d4a] SuiteSparse_jll v7.2.1+1
  [83775a58] Zlib_jll v1.2.13+1
  [8e850b90] libblastrampoline_jll v5.8.0+1
  [8e850ede] nghttp2_jll v1.52.0+1
  [3f19e933] p7zip_jll v17.4.0+2
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`
  • Output of versioninfo()
julia> versioninfo()
Julia Version 1.10.2
Commit bd47eca2c8 (2024-03-01 10:14 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Windows (x86_64-w64-mingw32)
  CPU: 8 × Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, skylake)
Threads: 1 default, 0 interactive, 1 GC (on 8 virtual cores)

Additional context
This error is caused by the assumption in the file src > ensemblegpuarray > kernels.jl that the time series for du can be written as a matrix (with one index for ODE coordinate and the next index for time). When a problem has non-diagonal noise you need two coordinate indexes and a time index, so the du time series needs to be a three index tensor or include some flatten and resize adaptor when evaluating the noise function.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions