Skip to content

nvalidIRError while solving large (32 equations) ODEs #326

@redsnic

Description

@redsnic

Hello, I have a question regarding an error that I am facing when solving systems of ODEs with more than 32 equations:

you can take a look at this other github issue especially to the last example, that I am posting here again for completeness:

using Plots, DifferentialEquations, CUDA, StaticArrays, DiffEqGPU, Symbolics, Catalyst

# works below 33, fails above
n_x = 33
@variables t
D = Differential(t)
@variables X(t)[1:n_x]

eqs = []
for i in 1:n_x
    push!(eqs, D(X[i]) ~ Num(1.0))
end

p = @SVector [1.0 for i in 1:n_x]
u0 = @SVector [1.0 for i in 1:n_x]
tspan = (0.0, 10.0)
sys = @named test = ODESystem(eqs, t)
prob = ODEProblem(sys, u0, tspan, p) # the problem must be out-of-place

# solve on CPU
sol = solve(prob, Tsit5(), saveat=0.1)
plot(sol, idxs=1:n_x)

# prepare the problem for the GPU
problem_func = (problem, i, repeat) -> remake(problem, u0=rand(n_x)) # randomize the initial condition
multi_problem = EnsembleProblem(prob; prob_func = problem_func, safetycopy = false)

# solve on GPU
solutions = solve(multi_problem, GPUTsit5(), EnsembleGPUKernel(CUDA.CUDABackend()), trajectories=10, adaptive = true, reltol=1e-6, abstol=1e-6, saveat=0.1)

# plot the results
for s in solutions
    plot!(s, idxs=1:n_x, linestyle=:dash, legend=false)
end
plot!()

This code fails with the following error:

nvalidIRError: compiling MethodInstance for DiffEqGPU.gpu_ode_asolve_kernel(::KernelAbstractions.CompilerMetadata{KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicCheck, Nothing, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}, KernelAbstractions.NDIteration.NDRange{1, KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicSize, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}}}, ::CuDeviceVector{DiffEqGPU.ImmutableODEProblem{SVector{33, Float64}, Tuple{Float64, Float64}, true, SVector{33, Float64}, ODEFunction{true, SciMLBase.AutoSpecialize, ModelingToolkit.var"#k#503"{RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0xae84faba, 0xca798e0c, 0x0f4ab0aa, 0xacc7e0b8, 0x5dfc199c), Nothing}, RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋out, :ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0x150edf5a, 0xa4ae4349, 0xa9fcb0e2, 0x7d639c2e, 0x036b7279), Nothing}}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, ModelingToolkit.var"#1269#generated_observed#513"{Bool, ODESystem, Dict{Any, Any}, Vector{SymbolicUtils.BasicSymbolic{Real}}}, Nothing, ODESystem, Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, @NamedTuple{}}, SciMLBase.StandardODEProblem}, 1}, ::GPUTsit5, ::CuDeviceMatrix{SVector{33, Float64}, 1}, ::CuDeviceMatrix{Float64, 1}, ::Float64, ::CallbackSet{Tuple{}, Tuple{}}, ::Nothing, ::Float64, ::Float64, ::StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}, ::Val{false}) resulted in invalid LLVM IR
Reason: unsupported call to an unknown function (call to julia.new_gc_frame)
Stacktrace:
 [1] multiple call sites
   @ unknown:0
Reason: unsupported call to an unknown function (call to julia.push_gc_frame)
Stacktrace:
 [1] multiple call sites
   @ unknown:0
Reason: unsupported call to an unknown function (call to julia.get_gc_frame_slot)
Stacktrace:
 [1] multiple call sites
   @ unknown:0
Reason: unsupported call to an unknown function (call to jl_f__apply_iterate)

Do you have an idea on why this is happening?
I am using a Titan RTX on my machine. Let me know if you need additional information.

Thank you in advance.

Metadata

Metadata

Assignees

No one assigned

    Labels

    questionFurther information is requested

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions