File tree Expand file tree Collapse file tree 1 file changed +5
-5
lines changed Expand file tree Collapse file tree 1 file changed +5
-5
lines changed Original file line number Diff line number Diff line change @@ -8,11 +8,11 @@ PaddleSeg对所有内置的分割模型都提供了公开数据集下的预训
8
8
9
9
| 模型 | 数据集合 | Depth multiplier | 下载地址 | Accuray Top1/5 Error|
10
10
| ---| ---| ---| ---| ---|
11
- | MobieNetV2_1 .0x | ImageNet | 1.0x | [ MobileNetV2_1.0x] ( https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar ) | 72.15%/90.65% |
12
- | MobieNetV2_0 .25x | ImageNet | 0.25x | [ MobileNetV2_0.25x] ( https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar ) | 53.21%/76.52% |
13
- | MobieNetV2_0 .5x | ImageNet | 0.5x | [ MobileNetV2_0.5x] ( https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar ) | 65.03%/85.72% |
14
- | MobieNetV2_1 .5x | ImageNet | 1.5x | [ MobileNetV2_1.5x] ( https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar ) | 74.12%/91.67% |
15
- | MobieNetV2_2 .0x | ImageNet | 2.0x | [ MobileNetV2_2.0x] ( https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar ) | 75.23%/92.58% |
11
+ | MobileNetV2_1 .0x | ImageNet | 1.0x | [ MobileNetV2_1.0x] ( https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar ) | 72.15%/90.65% |
12
+ | MobileNetV2_0 .25x | ImageNet | 0.25x | [ MobileNetV2_0.25x] ( https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar ) | 53.21%/76.52% |
13
+ | MobileNetV2_0 .5x | ImageNet | 0.5x | [ MobileNetV2_0.5x] ( https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar ) | 65.03%/85.72% |
14
+ | MobileNetV2_1 .5x | ImageNet | 1.5x | [ MobileNetV2_1.5x] ( https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar ) | 74.12%/91.67% |
15
+ | MobileNetV2_2 .0x | ImageNet | 2.0x | [ MobileNetV2_2.0x] ( https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar ) | 75.23%/92.58% |
16
16
17
17
用户可以结合实际场景的精度和预测性能要求,选取不同` Depth multiplier ` 参数的MobileNet模型。
18
18
You can’t perform that action at this time.
0 commit comments