Skip to content

Commit 45b38b2

Browse files
committed
feat: add transfer keypoint to coordinate not only a image in util.py
1 parent 5ee71dc commit 45b38b2

File tree

1 file changed

+42
-13
lines changed

1 file changed

+42
-13
lines changed

src/util.py

Lines changed: 42 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -8,36 +8,60 @@
88
import matplotlib.pyplot as plt
99
import cv2
1010

11+
from src.hand_model_outputsize import model
12+
1113

1214
def padRightDownCorner(img, stride, padValue):
1315
h = img.shape[0]
1416
w = img.shape[1]
1517

1618
pad = 4 * [None]
17-
pad[0] = 0 # up
18-
pad[1] = 0 # left
19-
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
20-
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
19+
pad[0] = 0 # up
20+
pad[1] = 0 # left
21+
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
22+
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
2123

2224
img_padded = img
23-
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
25+
pad_up = np.tile(img_padded[0:1, :, :] * 0 + padValue, (pad[0], 1, 1))
2426
img_padded = np.concatenate((pad_up, img_padded), axis=0)
25-
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
27+
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + padValue, (1, pad[1], 1))
2628
img_padded = np.concatenate((pad_left, img_padded), axis=1)
27-
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
29+
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + padValue, (pad[2], 1, 1))
2830
img_padded = np.concatenate((img_padded, pad_down), axis=0)
29-
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
31+
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + padValue, (1, pad[3], 1))
3032
img_padded = np.concatenate((img_padded, pad_right), axis=1)
3133

3234
return img_padded, pad
3335

36+
3437
# transfer caffe model to pytorch which will match the layer name
3538
def transfer(model, model_weights):
3639
transfered_model_weights = {}
3740
for weights_name in model.state_dict().keys():
3841
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
3942
return transfered_model_weights
4043

44+
45+
def transfer2coordinate(candidate, subset):
46+
coordinates = []
47+
keyMap = ['eyebrow_center', 'neck',
48+
'left_shoulder', 'left_elbow', 'left_wrist',
49+
'right_shoulder', 'right_elbow', 'right_wrist',
50+
'left_hip', 'left_knee', 'left_ankle',
51+
'right_hip', 'right_knee', 'right_ankle'
52+
]
53+
for n in range(len(subset)):
54+
keypoint = {}
55+
for i in range(18):
56+
index = int(subset[n][i])
57+
if index == -1:
58+
continue
59+
x, y = candidate[index][0:2]
60+
key = keyMap[i]
61+
keypoint[key] = (x, y)
62+
coordinates.append(keypoint)
63+
return coordinates
64+
4165
# draw the body keypoint and lims
4266
def draw_bodypose(canvas, candidate, subset):
4367
stickwidth = 4
@@ -74,6 +98,7 @@ def draw_bodypose(canvas, candidate, subset):
7498
# plt.imshow(canvas[:, :, [2, 1, 0]])
7599
return canvas
76100

101+
77102
def draw_handpose(canvas, all_hand_peaks, show_number=False):
78103
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
79104
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
@@ -90,10 +115,10 @@ def draw_handpose(canvas, all_hand_peaks, show_number=False):
90115

91116
for peaks in all_hand_peaks:
92117
for ie, e in enumerate(edges):
93-
if np.sum(np.all(peaks[e], axis=1)==0)==0:
118+
if np.sum(np.all(peaks[e], axis=1) == 0) == 0:
94119
x1, y1 = peaks[e[0]]
95120
x2, y2 = peaks[e[1]]
96-
ax.plot([x1, x2], [y1, y2], color=matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0]))
121+
ax.plot([x1, x2], [y1, y2], color=matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]))
97122

98123
for i, keyponit in enumerate(peaks):
99124
x, y = keyponit
@@ -104,17 +129,19 @@ def draw_handpose(canvas, all_hand_peaks, show_number=False):
104129
canvas = np.fromstring(bg.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
105130
return canvas
106131

132+
107133
# image drawed by opencv is not good.
108134
def draw_handpose_by_opencv(canvas, peaks, show_number=False):
109135
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
110136
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
111137
# cv2.rectangle(canvas, (x, y), (x+w, y+w), (0, 255, 0), 2, lineType=cv2.LINE_AA)
112138
# cv2.putText(canvas, 'left' if is_left else 'right', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
113139
for ie, e in enumerate(edges):
114-
if np.sum(np.all(peaks[e], axis=1)==0)==0:
140+
if np.sum(np.all(peaks[e], axis=1) == 0) == 0:
115141
x1, y1 = peaks[e[0]]
116142
x2, y2 = peaks[e[1]]
117-
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)
143+
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255,
144+
thickness=2)
118145

119146
for i, keyponit in enumerate(peaks):
120147
x, y = keyponit
@@ -123,6 +150,7 @@ def draw_handpose_by_opencv(canvas, peaks, show_number=False):
123150
cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
124151
return canvas
125152

153+
126154
# detect hand according to body pose keypoints
127155
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
128156
def handDetect(candidate, subset, oriImg):
@@ -138,7 +166,7 @@ def handDetect(candidate, subset, oriImg):
138166
if not (has_left or has_right):
139167
continue
140168
hands = []
141-
#left hand
169+
# left hand
142170
if has_left:
143171
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
144172
x1, y1 = candidate[left_shoulder_index][:2]
@@ -189,6 +217,7 @@ def handDetect(candidate, subset, oriImg):
189217
'''
190218
return detect_result
191219

220+
192221
# get max index of 2d array
193222
def npmax(array):
194223
arrayindex = array.argmax(1)

0 commit comments

Comments
 (0)