@@ -185,13 +185,13 @@ CEED_QFUNCTION(SWExplicit_Advection)(void *ctx, CeedInt Q,
185
185
// -- Height:
186
186
// Evaluate the strong form using
187
187
// div((h + H0) u) = u . grad(h) + (h + H0) div(u), with H0 constant
188
- // or in index notation: (u_j h)_{,j} = u_j h_j + (h + H0) u_{j,j}
188
+ // or in index notation: (u_j h)_{,j} = u_j h_{,j} + (h + H0) u_{j,j}
189
189
CeedScalar div_u = 0 , u_dot_grad_h = 0 ;
190
- for (CeedInt j = 0 ; j < 2 ; j ++ ) {
190
+ for (CeedInt j = 0 ; j < 2 ; j ++ ) { // we skip j=2 since dqdx[2] is zero
191
191
CeedScalar dhdx_j = 0 ;
192
- for (CeedInt k = 0 ; k < 2 ; k ++ ) { // TODO: check indices! in this case dXdx is 2x3
192
+ for (CeedInt k = 0 ; k < 2 ; k ++ ) {
193
193
div_u += du [j ][k ] * dXdx [k ][j ]; // u_{j,j} = u_{j,K} X_{K,j}
194
- dhdx_j += dh [k ] * dXdx [k ][j ];
194
+ dhdx_j += dh [k ] * dXdx [k ][j ]; // h_{,j} = h_K X_{K,j}
195
195
}
196
196
u_dot_grad_h += u [j ] * dhdx_j ;
197
197
}
@@ -310,13 +310,13 @@ CEED_QFUNCTION(SWImplicit_Advection)(void *ctx, CeedInt Q,
310
310
// -- Height:
311
311
// Evaluate the strong form using
312
312
// div((h + H0) u) = u . grad(h) + (h + H0) div(u), with H0 constant
313
- // or in index notation: (u_j h)_{,j} = u_j h_j + (h + H0) u_{j,j}
313
+ // or in index notation: (u_j h)_{,j} = u_j h_{,j} + (h + H0) u_{j,j}
314
314
CeedScalar div_u = 0 , u_dot_grad_h = 0 ;
315
- for (CeedInt j = 0 ; j < 2 ; j ++ ) {
315
+ for (CeedInt j = 0 ; j < 2 ; j ++ ) { // we skip j=2 since dqdx[2] is zero
316
316
CeedScalar dhdx_j = 0 ;
317
- for (CeedInt k = 0 ; k < 2 ; k ++ ) { // TODO: check indices! in this case dXdx is 2x3
317
+ for (CeedInt k = 0 ; k < 2 ; k ++ ) {
318
318
div_u += du [j ][k ] * dXdx [k ][j ]; // u_{j,j} = u_{j,K} X_{K,j}
319
- dhdx_j += dh [k ] * dXdx [k ][j ];
319
+ dhdx_j += dh [k ] * dXdx [k ][j ]; // h_{,j} = h_K X_{K,j}
320
320
}
321
321
u_dot_grad_h += u [j ] * dhdx_j ;
322
322
}
@@ -461,13 +461,13 @@ CEED_QFUNCTION(SWJacobian_Advection)(void *ctx, CeedInt Q,
461
461
// -- Height:
462
462
// Evaluate the strong form of the action of the Jacobian using
463
463
// div((h + H0) delta u) = delta u . grad(h) + (h + H0) div(delta u), with H0 constant
464
- // or in index notation: (delta u_j h)_{,j} = delta u_j h_j + (h + H0) delta u_{j,j}
464
+ // or in index notation: (delta u_j h)_{,j} = delta u_j h_{,j} + (h + H0) delta u_{j,j}
465
465
CeedScalar div_deltau = 0 , deltau_dot_grad_h = 0 ;
466
- for (CeedInt j = 0 ; j < 2 ; j ++ ) {
466
+ for (CeedInt j = 0 ; j < 2 ; j ++ ) { // we skip j=2 since dqdx[2] is zero
467
467
CeedScalar dhdx_j = 0 ;
468
- for (CeedInt k = 0 ; k < 2 ; k ++ ) { // TODO: check indices! in this case dXdx is 2x3
469
- div_deltau += deltadu [j ][k ] * dXdx [k ][j ]; // u_ {j,j} = u_ {j,K} X_{K,j}
470
- dhdx_j += dh [k ] * dXdx [k ][j ];
468
+ for (CeedInt k = 0 ; k < 2 ; k ++ ) {
469
+ div_deltau += deltadu [j ][k ] * dXdx [k ][j ]; // deltau_ {j,j} = deltau_ {j,K} X_{K,j}
470
+ dhdx_j += dh [k ] * dXdx [k ][j ]; // h_{,j} = h_K X_{K,j}
471
471
}
472
472
deltau_dot_grad_h += deltau [j ] * dhdx_j ;
473
473
}
0 commit comments